Monte Carlo real coded genetic algorithm (MC‐RGA) for radioactive particle tracking (RPT) experimentation

Radioactive particle tracking (RPT) technique is a non‐invasive velocimetry technique, extensively applied to study hydrodynamics of dense multiphase systems. In this technique, the position of a radioactive tracer particle, designed to mimic the phase of interest, is followed as a Lagrangian marker...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIChE journal Ročník 63; číslo 7; s. 2850 - 2863
Hlavní autoři: Yadav, Ashutosh, Ramteke, Manojkumar, Pant, Harish Jagat, Roy, Shantanu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York American Institute of Chemical Engineers 01.07.2017
Témata:
ISSN:0001-1541, 1547-5905
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Radioactive particle tracking (RPT) technique is a non‐invasive velocimetry technique, extensively applied to study hydrodynamics of dense multiphase systems. In this technique, the position of a radioactive tracer particle, designed to mimic the phase of interest, is followed as a Lagrangian marker of point velocity. Computational limitations encountered during tracer particle position reconstruction (which is an inherently slow process) have thus far restricted the use of this versatile technique only to small‐scale process vessels. Here, we present a noteworthy improvement over the classical Monte Carlo algorithm for tracer particle position reconstruction, whereby we enhance the convergence and computational speed of the algorithm using Real Coded Genetic Algorithm optimization. This modification results in drastic reduction in computational time required for detector parameter estimation, and altogether eliminates the need for the “distance‐count map,” which was earlier inherent to RPT experimentation. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2850–2863, 2017
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.15596