Robust incentive Stackelberg strategy for Markov jump linear stochastic systems via static output feedback

In this study, a robust static output feedback (SOF) incentive Stackelberg game for a Markov jump linear stochastic system governed by Itô differential equations with multiple leaders and multiple followers is investigated. The existence conditions for the SOF incentive Stackelberg strategies are de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET control theory & applications Jg. 14; H. 9; S. 1246 - 1254
Hauptverfasser: Mukaidani, Hiroaki, Saravanakumar, Ramasamy, Xu, Hua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 11.06.2020
Schlagworte:
ISSN:1751-8644, 1751-8652
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a robust static output feedback (SOF) incentive Stackelberg game for a Markov jump linear stochastic system governed by Itô differential equations with multiple leaders and multiple followers is investigated. The existence conditions for the SOF incentive Stackelberg strategies are derived in terms of the solvability of a set of higher-order cross-coupled stochastic algebraic Lyapunov type equations (CCSALTEs). A classical Lagrange multiplier technique is employed to solve the CCSALTEs; therefore, the solution of the bilinear matrix inequality, which is a common NP-hard problem when designing SOF strategies, is not required. A heuristic algorithm is developed based on the CCSALTEs. In particular, it is shown that a robust convergence is guaranteed by combining the Krasnoselskii–Mann iterative algorithm with a new convergence condition. The performance of the proposed algorithm is discussed and a simple practical example is provided to demonstrate the effectiveness of the proposed algorithm and the SOF incentive Stackelberg strategies.
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2019.0917