Robust incentive Stackelberg strategy for Markov jump linear stochastic systems via static output feedback

In this study, a robust static output feedback (SOF) incentive Stackelberg game for a Markov jump linear stochastic system governed by Itô differential equations with multiple leaders and multiple followers is investigated. The existence conditions for the SOF incentive Stackelberg strategies are de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET control theory & applications Ročník 14; číslo 9; s. 1246 - 1254
Hlavní autoři: Mukaidani, Hiroaki, Saravanakumar, Ramasamy, Xu, Hua
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 11.06.2020
Témata:
ISSN:1751-8644, 1751-8652
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this study, a robust static output feedback (SOF) incentive Stackelberg game for a Markov jump linear stochastic system governed by Itô differential equations with multiple leaders and multiple followers is investigated. The existence conditions for the SOF incentive Stackelberg strategies are derived in terms of the solvability of a set of higher-order cross-coupled stochastic algebraic Lyapunov type equations (CCSALTEs). A classical Lagrange multiplier technique is employed to solve the CCSALTEs; therefore, the solution of the bilinear matrix inequality, which is a common NP-hard problem when designing SOF strategies, is not required. A heuristic algorithm is developed based on the CCSALTEs. In particular, it is shown that a robust convergence is guaranteed by combining the Krasnoselskii–Mann iterative algorithm with a new convergence condition. The performance of the proposed algorithm is discussed and a simple practical example is provided to demonstrate the effectiveness of the proposed algorithm and the SOF incentive Stackelberg strategies.
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2019.0917