An iterative model predictive control algorithm for constrained nonlinear systems

An iterative model predictive control (MPC) scheme for constrained nonlinear systems is presented. The idea of the method is to detour from the solution of a non‐convex optimization problem using a time‐variant linearization of the nonlinear system model that is adjusted iteratively by solving an it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of control Jg. 21; H. 5; S. 2193 - 2207
Hauptverfasser: Silva, Nivaldo F., Dórea, Carlos Eduardo T., Maitelli, André L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc 01.09.2019
Schlagworte:
ISSN:1561-8625, 1934-6093
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An iterative model predictive control (MPC) scheme for constrained nonlinear systems is presented. The idea of the method is to detour from the solution of a non‐convex optimization problem using a time‐variant linearization of the nonlinear system model that is adjusted iteratively by solving an iterative quadratic programming optimization problem at each sampling time. The main advantage is the faster resolution of the optimization problem by using quadratic programming instead of non‐convex programming and yet, properly describing the nonlinear dynamics of the process being controlled. In this article, a general framework of the method is presented together with a discussion on the conditions under which the iterations converge and on the uncertainty of its results due to the linearization used, as well as some practical considerations about its implementation. The performance of the proposed controller is illustrated via two examples.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1561-8625
1934-6093
DOI:10.1002/asjc.1815