Multilevel Monte Carlo applied to chemical engineering systems subject to uncertainty

The aim of this study is to evaluate the performance of Multilevel Monte Carlo (MLMC) sampling technique for uncertainty quantification in chemical engineering systems. Three systems (a mixing tank, a wastewater treatment plant, and a ternary distillation column, all subject to uncertainty) were con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIChE journal Ročník 64; číslo 5; s. 1651 - 1661
Hlavní autoři: Kimaev, Grigoriy, Ricardez‐Sandoval, Luis A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York American Institute of Chemical Engineers 01.05.2018
Témata:
ISSN:0001-1541, 1547-5905
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The aim of this study is to evaluate the performance of Multilevel Monte Carlo (MLMC) sampling technique for uncertainty quantification in chemical engineering systems. Three systems (a mixing tank, a wastewater treatment plant, and a ternary distillation column, all subject to uncertainty) were considered. The expected values of the systems' observables were estimated using MLMC, Power Series and Polynomial Chaos expansions, and standard Monte Carlo (MC) sampling. The MLMC technique achieved results of significantly greater accuracy than other methods at a lower computational cost than standard MC. This study highlights the nuances of adapting the MLMC technique to chemical engineering systems and the advantages of using MLMC for uncertainty quantification. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1651–1661, 2018
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.16045