Multilevel Monte Carlo applied to chemical engineering systems subject to uncertainty

The aim of this study is to evaluate the performance of Multilevel Monte Carlo (MLMC) sampling technique for uncertainty quantification in chemical engineering systems. Three systems (a mixing tank, a wastewater treatment plant, and a ternary distillation column, all subject to uncertainty) were con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIChE journal Ročník 64; číslo 5; s. 1651 - 1661
Hlavní autoři: Kimaev, Grigoriy, Ricardez‐Sandoval, Luis A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York American Institute of Chemical Engineers 01.05.2018
Témata:
ISSN:0001-1541, 1547-5905
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The aim of this study is to evaluate the performance of Multilevel Monte Carlo (MLMC) sampling technique for uncertainty quantification in chemical engineering systems. Three systems (a mixing tank, a wastewater treatment plant, and a ternary distillation column, all subject to uncertainty) were considered. The expected values of the systems' observables were estimated using MLMC, Power Series and Polynomial Chaos expansions, and standard Monte Carlo (MC) sampling. The MLMC technique achieved results of significantly greater accuracy than other methods at a lower computational cost than standard MC. This study highlights the nuances of adapting the MLMC technique to chemical engineering systems and the advantages of using MLMC for uncertainty quantification. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1651–1661, 2018
AbstractList The aim of this study is to evaluate the performance of Multilevel Monte Carlo (MLMC) sampling technique for uncertainty quantification in chemical engineering systems. Three systems (a mixing tank, a wastewater treatment plant, and a ternary distillation column, all subject to uncertainty) were considered. The expected values of the systems' observables were estimated using MLMC, Power Series and Polynomial Chaos expansions, and standard Monte Carlo (MC) sampling. The MLMC technique achieved results of significantly greater accuracy than other methods at a lower computational cost than standard MC. This study highlights the nuances of adapting the MLMC technique to chemical engineering systems and the advantages of using MLMC for uncertainty quantification. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1651–1661, 2018
Author Kimaev, Grigoriy
Ricardez‐Sandoval, Luis A.
Author_xml – sequence: 1
  givenname: Grigoriy
  surname: Kimaev
  fullname: Kimaev, Grigoriy
  organization: University of Waterloo
– sequence: 2
  givenname: Luis A.
  orcidid: 0000-0001-9867-6778
  surname: Ricardez‐Sandoval
  fullname: Ricardez‐Sandoval, Luis A.
  email: laricard@uwaterloo.ca
  organization: University of Waterloo
BookMark eNp1kD1PwzAQhi1UJNrCwD-IxMSQ1o5jJxmriI9KrVjobDmOXVy5TrAdUP49LmVCMJ3u9Lx3umcGJrazEoBbBBcIwmzJtVggCnNyAaaI5EVKKkgmYAohRGkcoCsw8_4Qu6wosynYbQcTtJEf0iTbzgaZ1NyZLuF9b7Rsk9Al4k0eteAmkXavrZRO233iRx_k0Sd-aA5ShBM3WCFd4NqG8RpcKm68vPmpc7B7fHitn9PNy9O6Xm1SgXFO0pZULaUYN5USlSKEVwVtSKkqWBBa5kLQVrUtVaghBWmqkpIWCUUUblVGEWrwHNyd9_auex-kD-zQDc7GkyyDGUYYY4gjtTxTwnXeO6mY0IEHHd91XBuGIDu5Y9Ed-3YXE_e_Er3TR-7GP9mf7Z9R4_g_yFbr-pz4AgLagIU
CitedBy_id crossref_primary_10_1016_j_fuel_2023_127393
crossref_primary_10_1016_j_apenergy_2020_114533
crossref_primary_10_1016_j_cherd_2018_10_006
crossref_primary_10_1002_aic_16262
crossref_primary_10_1016_j_cherd_2018_08_006
crossref_primary_10_1029_2022WR032599
crossref_primary_10_1016_j_ces_2021_117224
crossref_primary_10_1016_j_compchemeng_2020_106918
crossref_primary_10_1016_j_compchemeng_2019_106663
crossref_primary_10_1016_j_ijggc_2020_103113
Cites_doi 10.1007/s40072-015-0063-9
10.1115/1.1767847
10.1016/j.advwatres.2005.11.013
10.2118/181764-PA
10.1016/j.ress.2017.03.003
10.1002/2016WR019475
10.1111/j.2517-6161.1951.tb00067.x
10.1016/j.jcp.2013.05.039
10.1115/1.2888303
10.1016/j.cam.2016.10.008
10.1016/j.advwatres.2016.01.004
10.1016/j.ress.2004.09.006
10.1002/aic.690420814
10.1016/j.jcp.2013.03.023
10.1016/j.jprocont.2017.07.002
10.1016/j.jprocont.2006.10.008
10.1016/j.jcp.2016.03.027
10.1007/s10596-013-9358-y
10.1017/S096249291500001X
10.1016/j.compchemeng.2016.12.015
10.1002/aic.690450710
10.2307/j.ctv7h0skv
10.1137/120883803
10.1137/110840546
10.1016/j.compchemeng.2014.09.019
10.2307/1268522
10.1080/01621459.2017.1295863
10.1080/00224065.1999.11979891
10.1109/TCST.2003.816419
10.1016/j.jprocont.2003.07.004
10.1002/cjce.22912
10.1002/aic.15702
10.1002/aic.15215
10.1137/S1064827501387826
10.2118/172635-PA
10.1007/978-3-319-33507-0_8
10.2514/6.2009-2274
10.1063/1.4960118
10.1137/140960086
10.1016/j.ces.2014.05.027
10.1002/aic.14040
10.1287/opre.1070.0496
10.1016/j.compchemeng.2014.01.002
10.1016/j.advwatres.2016.06.007
10.1016/S0951-8320(03)00058-9
10.1016/j.jcp.2014.02.047
ContentType Journal Article
Copyright 2017 American Institute of Chemical Engineers
2018 American Institute of Chemical Engineers
Copyright_xml – notice: 2017 American Institute of Chemical Engineers
– notice: 2018 American Institute of Chemical Engineers
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.16045
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 1661
ExternalDocumentID 10_1002_aic_16045
AIC16045
Genre article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABJIA
ADMLS
AEFGJ
AEYWJ
AFFHD
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
PHGZM
PHGZT
PQGLB
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c3345-d59d6633b9fc9f55a976b58f9075684cc6dfdd6f1b575b9865d1cf5f3df2611b3
IEDL.DBID DRFUL
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429536200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-1541
IngestDate Mon Nov 10 03:04:59 EST 2025
Sat Nov 29 07:21:17 EST 2025
Tue Nov 18 21:07:14 EST 2025
Wed Jan 22 16:58:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3345-d59d6633b9fc9f55a976b58f9075684cc6dfdd6f1b575b9865d1cf5f3df2611b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9867-6778
PQID 2023133303
PQPubID 7879
PageCount 11
ParticipantIDs proquest_journals_2023133303
crossref_citationtrail_10_1002_aic_16045
crossref_primary_10_1002_aic_16045
wiley_primary_10_1002_aic_16045_AIC16045
PublicationCentury 2000
PublicationDate May 2018
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationYear 2018
Publisher American Institute of Chemical Engineers
Publisher_xml – name: American Institute of Chemical Engineers
References 2007; 17
2017; 317
2014; 116
1990; 57
2013; 1
2003; 81
2015; 3
2010
2009
1999; 45
2008; 56
2016; 52
2016; 95
2016; 94
2014; 63
2012; 10
2005; 89
2003; 11
2015; 24
2016; 4
2016; 6
2013; 59
2013; 17
2004; 14
2017; 99
2002; 24
2004; 57
1951; 13
2016; 21
2006; 29
2017
2016; 62
1999; 31
2013; 251
2016
2016; 314
2013; 250
2009; 5
2017; 165
1979; 21
2014; 71
2014; 268
1996; 42
e_1_2_9_30_1
e_1_2_9_31_1
Box GEP (e_1_2_9_9_1) 1951; 13
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Xiu D. (e_1_2_9_17_1) 2009; 5
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 57
  start-page: 345
  issue: 5
  year: 2004
  end-page: 384
  article-title: Verification, validation, and predictive capability in computational engineering and physics
  publication-title: Appl Mech Rev.
– volume: 59
  start-page: 2497
  issue: 7
  year: 2013
  end-page: 2514
  article-title: Simultaneous process synthesis and control design under uncertainty: a worst‐case performance approach
  publication-title: AIChE J.
– volume: 314
  start-page: 661
  year: 2016
  end-page: 681
  article-title: Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method
  publication-title: J Comput Phys.
– volume: 116
  start-page: 590
  year: 2014
  end-page: 600
  article-title: Uncertainty analysis and robust optimization of multiscale process systems with application to epitaxial thin film growth
  publication-title: Chem Eng Sci.
– volume: 42
  start-page: 2251
  issue: 8
  year: 1996
  end-page: 2272
  article-title: Optimal design of dynamic systems under uncertainty
  publication-title: AIChE J.
– volume: 56
  start-page: 607
  issue: 3
  year: 2008
  end-page: 617
  article-title: Multi‐level Monte Carlo path simulation
  publication-title: Oper Res.
– volume: 251
  start-page: 445
  year: 2013
  end-page: 460
  article-title: Stabilized multilevel Monte Carlo method for stiff stochastic differential equations
  publication-title: J Comput Phys.
– volume: 10
  start-page: 146
  issue: 1
  year: 2012
  end-page: 179
  article-title: Multilevel Monte Carlo for continuous time Markov Chains, with applications in biochemical kinetics
  publication-title: Multiscale Model Simul.
– volume: 1
  start-page: 2
  issue: 1
  year: 2013
  end-page: 18
  article-title: Mean exit times and the multilevel Monte Carlo method
  publication-title: SIAM/ASA J Uncertain Quantif.
– volume: 14
  start-page: 411
  issue: 4
  year: 2004
  end-page: 422
  article-title: Open‐loop and closed‐loop robust optimal control of batch processes using distributional and worst‐case analysis
  publication-title: J Process Control.
– volume: 21
  start-page: 1192
  issue: 4
  year: 2016
  end-page: 1203
  article-title: Applying the Multilevel Monte Carlo method for heterogeneity‐induced uncertainty quantification of surfactant/polymer flooding
  publication-title: SPE J.
– volume: 17
  start-page: 229
  issue: 3
  year: 2007
  end-page: 240
  article-title: Distributional uncertainty analysis using power series and polynomial chaos expansions
  publication-title: J Process Control.
– article-title: A comparison of efficient uncertainty quantification techniques for stochastic multiscale systems
  publication-title: AIChE J.
– volume: 6
  start-page: 75020
  issue: 7
  year: 2016
  article-title: Multi‐level methods and approximating distribution functions
  publication-title: AIP Adv.
– volume: 5
  start-page: 242
  issue: 2–4
  year: 2009
  end-page: 272
  article-title: Fast numerical methods for stochastic computations: a review
  publication-title: Commun Comput Phys.
– volume: 268
  start-page: 39
  year: 2014
  end-page: 50
  article-title: Solver‐based vs. grid‐based multilevel Monte Carlo for two phase flow and transport in random heterogeneous porous media
  publication-title: J Comput Phys.
– volume: 89
  start-page: 305
  issue: 3
  year: 2005
  end-page: 330
  article-title: A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling
  publication-title: Reliab Eng Syst Saf.
– volume: 24
  start-page: 619
  issue: 2
  year: 2002
  end-page: 644
  article-title: The Wiener‐Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J Sci Comput.
– volume: 24
  start-page: 259
  year: 2015
  end-page: 328
  article-title: Multilevel Monte Carlo methods
  publication-title: Acta Numer.
– article-title: Robust dynamic optimization in heterogeneous multiscale catalytic flow reactors using polynomial chaos expansion
  publication-title: J Process Control.
– volume: 94
  start-page: 498
  year: 2016
  end-page: 509
  article-title: Multilevel Monte Carlo methods for computing failure probability of porous media flow systems
  publication-title: Adv Water Resour.
– article-title: Robust optimization of a multiscale heterogeneous catalytic reactor system with spatially‐varying uncertainty descriptions using polynomial chaos expansions
  publication-title: Can J Chem Eng.
– start-page: 209
  year: 2016
  end-page: 227
– volume: 45
  start-page: 1469
  issue: 7
  year: 1999
  end-page: 1476
  article-title: Worst‐case performance analysis of optimal batch control trajectories
  publication-title: AIChE J.
– year: 2010
– volume: 95
  start-page: 46
  year: 2016
  end-page: 60
  article-title: On the predictivity of pore‐scale simulations: estimating uncertainties with multilevel Monte Carlo
  publication-title: Adv Water Resour.
– volume: 250
  start-page: 685
  year: 2013
  end-page: 702
  article-title: Multilevel Monte Carlo for two phase flow and Buckley‐Leverett transport in random heterogeneous porous media
  publication-title: J Comput Phys.
– volume: 21
  start-page: 2027
  issue: 6
  year: 2016
  end-page: 2037
  article-title: Parallel Multilevel Monte Carlo for two‐phase flow and transport in random heterogeneous porous media with sampling error and discretization error balancing
  publication-title: SPE J.
– start-page: 1
  year: 2009
  end-page: 37
– volume: 31
  start-page: 30
  issue: 1
  year: 1999
  end-page: 44
  article-title: Response surface methodology–current status and future directions
  publication-title: J Qual Technol.
– volume: 13
  start-page: 1
  issue: 1
  year: 1951
  end-page: 45
  article-title: On the Experimental Attainment of Optimum Conditions
  publication-title: J R Stat Soc Ser B.
– volume: 71
  start-page: 618
  year: 2014
  end-page: 635
  article-title: Integrated design and control of chemical processes—part II: an illustrative example
  publication-title: Comput Chem Eng.
– volume: 165
  start-page: 188
  year: 2017
  end-page: 196
  article-title: Multilevel Monte Carlo for reliability theory.
  publication-title: Eng Syst Saf.
– volume: 63
  start-page: 66
  year: 2014
  end-page: 81
  article-title: Simultaneous design and MPC‐based control for dynamic systems under uncertainty: a stochastic approach
  publication-title: Comput Chem Eng.
– volume: 17
  start-page: 833
  issue: 5
  year: 2013
  end-page: 850
  article-title: Multilevel Monte Carlo methods using ensemble level mixed MsFEM for two‐phase flow and transport simulations
  publication-title: Comput Geosci.
– volume: 3
  start-page: 267
  issue: 1
  year: 2015
  end-page: 295
  article-title: Multilevel Monte Carlo approximation of distribution functions and densities
  publication-title: SIAM/ASA J Uncertain Quantif.
– volume: 99
  start-page: 66
  year: 2017
  end-page: 81
  article-title: Simultaneous design and control under uncertainty: a back‐off approach using power series expansions
  publication-title: Comput Chem Eng.
– volume: 4
  start-page: 3
  issue: 1
  year: 2016
  end-page: 40
  article-title: Estimation of arbitrary order central statistical moments by the Multilevel Monte Carlo method
  publication-title: Stoch Partial Differ Equations Anal Comput.
– volume: 317
  start-page: 700
  year: 2017
  end-page: 717
  article-title: Multilevel approximate Bayesian approaches for flows in highly heterogeneous porous media and their applications
  publication-title: J Comput Appl Math.
– volume: 11
  start-page: 694
  issue: 5
  year: 2003
  end-page: 704
  article-title: Worst‐case and distributional robustness analysis of finite‐time control trajectories for nonlinear distributed parameter systems
  publication-title: IEEE Trans Control Syst Technol.
– volume: 57
  start-page: 197
  issue: 1
  year: 1990
  end-page: 202
  article-title: Polynomial chaos in stochastic finite elements
  publication-title: J Appl Mech.
– year: 2017
  article-title: Upscaling uncertainty with dynamic discrepancy for a multi‐scale carbon capture system
  publication-title: J Am Stat Assoc.
– volume: 81
  start-page: 23
  issue: 1
  year: 2003
  end-page: 69
  article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
  publication-title: Reliab Eng Syst Saf.
– volume: 29
  start-page: 1586
  issue: 11
  year: 2006
  end-page: 1597
  article-title: A framework for dealing with uncertainty due to model structure error
  publication-title: Adv Water Resour.
– volume: 21
  start-page: 239
  issue: 2
  year: 1979
  end-page: 245
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics.
– volume: 62
  start-page: 1
  issue: 7
  year: 2016
  end-page: 17
  article-title: Distributional uncertainty analysis and robust optimization in spatially heterogeneous multiscale process systems
  publication-title: AIChE J.
– volume: 52
  start-page: 9642
  issue: 12
  year: 2016
  end-page: 9660
  article-title: An improved multilevel Monte Carlo method for estimating probability distribution functions in stochastic oil reservoir simulations
  publication-title: Water Resour Res.
– ident: e_1_2_9_28_1
  doi: 10.1007/s40072-015-0063-9
– ident: e_1_2_9_2_1
  doi: 10.1115/1.1767847
– ident: e_1_2_9_5_1
  doi: 10.1016/j.advwatres.2005.11.013
– ident: e_1_2_9_35_1
  doi: 10.2118/181764-PA
– ident: e_1_2_9_41_1
  doi: 10.1016/j.ress.2017.03.003
– ident: e_1_2_9_32_1
  doi: 10.1002/2016WR019475
– volume: 13
  start-page: 1
  issue: 1
  year: 1951
  ident: e_1_2_9_9_1
  article-title: On the Experimental Attainment of Optimum Conditions
  publication-title: J R Stat Soc Ser B.
  doi: 10.1111/j.2517-6161.1951.tb00067.x
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jcp.2013.05.039
– ident: e_1_2_9_16_1
  doi: 10.1115/1.2888303
– ident: e_1_2_9_36_1
  doi: 10.1016/j.cam.2016.10.008
– ident: e_1_2_9_38_1
  doi: 10.1016/j.advwatres.2016.01.004
– ident: e_1_2_9_7_1
  doi: 10.1016/j.ress.2004.09.006
– ident: e_1_2_9_47_1
  doi: 10.1002/aic.690420814
– ident: e_1_2_9_33_1
  doi: 10.1016/j.jcp.2013.03.023
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jprocont.2017.07.002
– ident: e_1_2_9_20_1
  doi: 10.1016/j.jprocont.2006.10.008
– ident: e_1_2_9_30_1
  doi: 10.1016/j.jcp.2016.03.027
– ident: e_1_2_9_39_1
  doi: 10.1007/s10596-013-9358-y
– ident: e_1_2_9_24_1
  doi: 10.1017/S096249291500001X
– ident: e_1_2_9_43_1
  doi: 10.1016/j.compchemeng.2016.12.015
– ident: e_1_2_9_11_1
  doi: 10.1002/aic.690450710
– ident: e_1_2_9_18_1
  doi: 10.2307/j.ctv7h0skv
– ident: e_1_2_9_27_1
  doi: 10.1137/120883803
– ident: e_1_2_9_26_1
  doi: 10.1137/110840546
– ident: e_1_2_9_44_1
  doi: 10.1016/j.compchemeng.2014.09.019
– ident: e_1_2_9_6_1
  doi: 10.2307/1268522
– ident: e_1_2_9_4_1
  doi: 10.1080/01621459.2017.1295863
– ident: e_1_2_9_10_1
  doi: 10.1080/00224065.1999.11979891
– ident: e_1_2_9_12_1
  doi: 10.1109/TCST.2003.816419
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jprocont.2003.07.004
– ident: e_1_2_9_21_1
  doi: 10.1002/cjce.22912
– ident: e_1_2_9_46_1
  doi: 10.1002/aic.15702
– ident: e_1_2_9_15_1
  doi: 10.1002/aic.15215
– ident: e_1_2_9_19_1
  doi: 10.1137/S1064827501387826
– ident: e_1_2_9_42_1
  doi: 10.2118/172635-PA
– ident: e_1_2_9_40_1
  doi: 10.1007/978-3-319-33507-0_8
– ident: e_1_2_9_3_1
  doi: 10.2514/6.2009-2274
– volume: 5
  start-page: 242
  issue: 2
  year: 2009
  ident: e_1_2_9_17_1
  article-title: Fast numerical methods for stochastic computations: a review
  publication-title: Commun Comput Phys.
– ident: e_1_2_9_31_1
  doi: 10.1063/1.4960118
– ident: e_1_2_9_29_1
  doi: 10.1137/140960086
– ident: e_1_2_9_14_1
  doi: 10.1016/j.ces.2014.05.027
– ident: e_1_2_9_48_1
  doi: 10.1002/aic.14040
– ident: e_1_2_9_23_1
  doi: 10.1287/opre.1070.0496
– ident: e_1_2_9_45_1
  doi: 10.1016/j.compchemeng.2014.01.002
– ident: e_1_2_9_37_1
  doi: 10.1016/j.advwatres.2016.06.007
– ident: e_1_2_9_8_1
  doi: 10.1016/S0951-8320(03)00058-9
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jcp.2014.02.047
SSID ssj0012782
Score 2.3144023
Snippet The aim of this study is to evaluate the performance of Multilevel Monte Carlo (MLMC) sampling technique for uncertainty quantification in chemical engineering...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1651
SubjectTerms Chemical engineering
Computer applications
Distillation
Monte Carlo simulation
multilevel Monte Carlo
Polynomial Chaos
Power Series
Sampling
Studies
Uncertainty
uncertainty quantification
Wastewater treatment
Wastewater treatment plants
Title Multilevel Monte Carlo applied to chemical engineering systems subject to uncertainty
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.16045
https://www.proquest.com/docview/2023133303
Volume 64
WOSCitedRecordID wos000429536200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7MzYMe_C1OpwTx4KVsTZouwdOYDoU5RBzsVtq0gcHYZO0E_3tfmraboCB46-GlLfn1fe_l5XsAN1ogKPgMmZvkzPEi4TuCIZFzNWKH6OKeaEVch93RSEwm8qUGd-VdGKsPUQXczMrI92uzwMMoba9FQ8OpMqERj29Bg-K85XVo3L8OxsPqEIF2hRULR48ZmYJbCgt1aLtq_B2O1hxzk6nmUDPY_9dPHsBewTBJz06JQ6gl8yPY3dAdPIZxfu12ZvKFyLORpyL9cDlbkNBSUpItiCqEBEiybkis7HNK0lVkwjfGDmHRJhVknycwHjy89R-dor6CoxjzuBNzGSPhYJHUSmrOQ6QmERca_WXuC08pP9Zx7Gs3Qk4XSeHz2FWaaxZr9LvciJ1Cfb6YJ2dAJA3RN6FMh0p7WrCwY7LfYkRCqru-pE24Lbs5UIX4uKmBMQusbDINsKeCvKeacF2ZvlvFjZ-MWuVYBcWiSwNTCR5dbgRl_Fw-Kr-_IOg99fOH87-bXsAO0iVh0x1bUM-Wq-QSttVHNk2XV8Xs-wKu9tsv
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7MTVAP_hanU4N48FJcm6ZNwcuYjg27IbLBbqVNGxiMTbZO8L_3pWm7CQqCtx5e2pK85Pvey8sXgDvJERQciszNY9SwI-4YnCKRMyViB3dxTdQirr47GPDx2HutwGNxFkbrQ5QJNzUzsvVaTXCVkH5Yq4aGE6FyIzbbgpqNboT-XXt664z8chfBcrlWC8eQGamCWSgLNa2HsvF3PFqTzE2qmmFN5-B_f3kI-znHJC3tFEdQSWbHsLehPHgCo-zg7VRVDJG-Eqgi7XAxnZNQk1KSzonIpQRIsm5ItPDzkixXkUrgKDsERl1WkH6ewqjzPGx3jfyGBUNQajMjZl6MlINGnhSeZCxEchIxLjFiZg63hXBiGceONCNkdZHHHRabQjJJY4mRlxnRM6jO5rPkHIhnhRidWFSGQtqS07Cp6t9ixEJLuo5n1eG-6OdA5PLj6haMaaCFk60AeyrIeqoOt6Xpu9bc-MmoUQxWkE-7ZaDugsegG2EZP5cNy-8vCFq9dvZw8XfTG9jpDvt-4PcGL5ewi-SJ6-LHBlTTxSq5gm3xkU6Wi-vcFb8A2J_fHw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7MTUQP_hanU4N48FJcm6ZNwcvYHA7nGOJgt9ImDQzGNrZO8L_3pWm3CQqCtx5e2pLk5fte8vI9gDvFERQ8iswtYNRyY-5ZnCKRsxViB_dxTTQirl2_1-PDYdAvwWNxF8boQ6w23LRnZOu1dvBkJtXDWjU0Ggm9N-KyLai4uohMGSqtt_aguzpFcHxu1MIxZEaqYBfKQnXnYdX4Ox6tSeYmVc2wpn3wv788hP2cY5KGmRRHUEomx7C3oTx4AoPs4u1YZwyRVy1QRZrRfDwlkSGlJJ0SkUsJkGTdkBjh5wVZLGO9gaPtEBhNWkH6eQqD9tN789nKKyxYglKXWZIFEikHjQMlAsVYhOQkZlxhxMw87grhSSWlp-wYWV0ccI9JWyimqFQYedkxPYPyZDpJzoEEToTRiUNVJJSrOI3qOv9NIhY6yvcCpwr3RT-HIpcf11UwxqERTnZC7Kkw66kq3K5MZ0Zz4yejWjFYYe52i1DXgsegG2EZP5cNy-8vCBudZvZw8XfTG9jpt9pht9N7uYRd5E7c5D7WoJzOl8kVbIuPdLSYX-cz8QuTC96a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Monte+Carlo+applied+to+chemical+engineering+systems+subject+to+uncertainty&rft.jtitle=AIChE+journal&rft.au=Kimaev%2C+Grigoriy&rft.au=Ricardez%E2%80%90Sandoval%2C+Luis+A.&rft.date=2018-05-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=64&rft.issue=5&rft.spage=1651&rft.epage=1661&rft_id=info:doi/10.1002%2Faic.16045&rft.externalDBID=10.1002%252Faic.16045&rft.externalDocID=AIC16045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon