Fluid-structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms
Coupled fluid–structure interaction (FSI) analysis of the human right coronary artery (RCA) has been carried out to investigate the effects of wall compliance on coronary hemodynamics. A 3‐D model of a stenosed RCA was reconstructed based on multislice computerized tomography images. A velocity wave...
Uložené v:
| Vydané v: | Communications in numerical methods in engineering Ročník 25; číslo 5; s. 565 - 580 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Chichester, UK
John Wiley & Sons, Ltd
01.05.2009
|
| Predmet: | |
| ISSN: | 1069-8299, 1099-0887 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Coupled fluid–structure interaction (FSI) analysis of the human right coronary artery (RCA) has been carried out to investigate the effects of wall compliance on coronary hemodynamics. A 3‐D model of a stenosed RCA was reconstructed based on multislice computerized tomography images. A velocity waveform in the proximal RCA and a pressure waveform in the distal RCA of a patient with a severe stenosis were acquired with a catheter delivered wire probe and applied as boundary conditions. The arterial wall was modeled as a Mooney–Rivlin hyperelastic material. The predicted maximum wall displacement (3.85 mm) was comparable with the vessel diameter (∼4 mm), but the diameter variation was much smaller, 0.134 mm at the stenosis and 0.486 mm in the distal region. Comparison of the computational results between the FSI and rigid‐wall models showed that the instantaneous wall shear stress (WSS) distributions were affected by diameter variation in the arterial wall; increasing systolic blood pressure dilated the vessel and consequently lowered WSS, whereas the opposite occurred when pressure started to decrease. However, the effects of wall compliance on time‐averaged WSS (TAWSS) and oscillatory shear index (OSI) were insignificant (4.5 and 2.7% difference in maximum TAWSS and OSI, respectively). Copyright © 2009 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | Coupled fluid–structure interaction (FSI) analysis of the human right coronary artery (RCA) has been carried out to investigate the effects of wall compliance on coronary hemodynamics. A 3‐D model of a stenosed RCA was reconstructed based on multislice computerized tomography images. A velocity waveform in the proximal RCA and a pressure waveform in the distal RCA of a patient with a severe stenosis were acquired with a catheter delivered wire probe and applied as boundary conditions. The arterial wall was modeled as a Mooney–Rivlin hyperelastic material. The predicted maximum wall displacement (3.85 mm) was comparable with the vessel diameter (∼4 mm), but the diameter variation was much smaller, 0.134 mm at the stenosis and 0.486 mm in the distal region. Comparison of the computational results between the FSI and rigid‐wall models showed that the instantaneous wall shear stress (WSS) distributions were affected by diameter variation in the arterial wall; increasing systolic blood pressure dilated the vessel and consequently lowered WSS, whereas the opposite occurred when pressure started to decrease. However, the effects of wall compliance on time‐averaged WSS (TAWSS) and oscillatory shear index (OSI) were insignificant (4.5 and 2.7% difference in maximum TAWSS and OSI, respectively). Copyright © 2009 John Wiley & Sons, Ltd. Coupled fluid-structure interaction (FSI) analysis of the human right coronary artery (RCA) has been carried out to investigate the effects of wall compliance on coronary hemodynamics. A 3-D model of a stenosed RCA was reconstructed based on multislice computerized tomography images. A velocity waveform in the proximal RCA and a pressure waveform in the distal RCA of a patient with a severe stenosis were acquired with a catheter delivered wire probe and applied as boundary conditions. The arterial wall was modeled as a Mooney-Rivlin hyperelastic material. The predicted maximum wall displacement (3.85 mm) was comparable with the vessel diameter (4 mm), but the diameter variation was much smaller, 0.134 mm at the stenosis and 0.486 mm in the distal region. Comparison of the computational results between the FSI and rigid-wall models showed that the instantaneous wall shear stress (WSS) distributions were affected by diameter variation in the arterial wall; increasing systolic blood pressure dilated the vessel and consequently lowered WSS, whereas the opposite occurred when pressure started to decrease. However, the effects of wall compliance on time-averaged WSS (TAWSS) and oscillatory shear index (OSI) were insignificant (4.5 and 2.7% difference in maximum TAWSS and OSI, respectively). |
| Author | Thom, Simon A. McG Francis, Darrel P. Mayet, Jamil Dowsey, Andrew W. Wright, Andrew R. Xu, X. Yun Yang, Guang-Zhong Hughes, Alun D. Wood, Nigel B. Hadjiloizou, Nearchos Davies, Justin Torii, Ryo |
| Author_xml | – sequence: 1 givenname: Ryo surname: Torii fullname: Torii, Ryo email: r.torii@imperial.ac.uk organization: Department of Chemical Engineering, Imperial College London, London, U.K – sequence: 2 givenname: Nigel B. surname: Wood fullname: Wood, Nigel B. organization: Department of Chemical Engineering, Imperial College London, London, U.K – sequence: 3 givenname: Nearchos surname: Hadjiloizou fullname: Hadjiloizou, Nearchos organization: International Centre for Circulatory Health, St. Mary's Hospital and Imperial College London, London, U.K – sequence: 4 givenname: Andrew W. surname: Dowsey fullname: Dowsey, Andrew W. organization: Royal Society/Wolfson Medical Image Computing Laboratory, Imperial College London, London, U.K – sequence: 5 givenname: Andrew R. surname: Wright fullname: Wright, Andrew R. organization: Department of Radiology, St. Mary's Hospital and Imperial College NHS Trust, London, U.K – sequence: 6 givenname: Alun D. surname: Hughes fullname: Hughes, Alun D. organization: International Centre for Circulatory Health, St. Mary's Hospital and Imperial College London, London, U.K – sequence: 7 givenname: Justin surname: Davies fullname: Davies, Justin organization: International Centre for Circulatory Health, St. Mary's Hospital and Imperial College London, London, U.K – sequence: 8 givenname: Darrel P. surname: Francis fullname: Francis, Darrel P. organization: International Centre for Circulatory Health, St. Mary's Hospital and Imperial College London, London, U.K – sequence: 9 givenname: Jamil surname: Mayet fullname: Mayet, Jamil organization: International Centre for Circulatory Health, St. Mary's Hospital and Imperial College London, London, U.K – sequence: 10 givenname: Guang-Zhong surname: Yang fullname: Yang, Guang-Zhong organization: Royal Society/Wolfson Medical Image Computing Laboratory, Imperial College London, London, U.K – sequence: 11 givenname: Simon A. McG surname: Thom fullname: Thom, Simon A. McG organization: International Centre for Circulatory Health, St. Mary's Hospital and Imperial College London, London, U.K – sequence: 12 givenname: X. Yun surname: Xu fullname: Xu, X. Yun organization: Department of Chemical Engineering, Imperial College London, London, U.K |
| BookMark | eNp1kE9v1DAUxC1UJNqCxEfwCXHJ1n-STXxEK1qQ2kWVinq0XrwvXYPXDrbT7Z754jjaCgkEp_cOv5nRzBk58cEjIW85W3DGxIXxuwUXkr8gp5wpVbGua0_mf6mqTij1ipyl9I0xpljHTsnPSzfZTZVynEyeIlLrM0Yw2QZPwYM7JJtoGCjQEbJFn6s0orGDNTTah22mJsTgIR4oxKI80L3NWzpuiy648GANOPqILhibC-I3dIyY0py0h0ccQtyl1-TlAC7hm-d7Tr5efrxbfaquv1x9Xn24royUNa-42Ag1gGiFUXJpmt70ouV90zPT8V6ikjWrW5D9phZMdHVj6g76AZH3oBQ08py8O_qOMfyYMGW9s8mgc-AxTEmXEFWLThbw_RE0MaQUcdBjtLvSUXOm55V1WVnPKxd08RdaisK8Xo5g3b8E1VGwtw4P_zXWq_XNn7xNGZ9-8xC_62Ur20bfr6_0_c36tmvUnb6VvwBGT6Ln |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0247438 crossref_primary_10_1177_09544119251355753 crossref_primary_10_1080_03091902_2018_1447034 crossref_primary_10_1080_10255842_2014_921682 crossref_primary_10_1016_j_bbe_2018_11_006 crossref_primary_10_1007_s12206_018_0321_7 crossref_primary_10_1007_s10439_010_0008_4 crossref_primary_10_1007_s10439_022_03007_x crossref_primary_10_3390_fluids6020053 crossref_primary_10_1016_j_bbe_2019_02_005 crossref_primary_10_1002_fld_2319 crossref_primary_10_1088_2057_1976_ad7030 crossref_primary_10_1016_j_medengphy_2011_10_001 crossref_primary_10_1109_TBME_2014_2310954 crossref_primary_10_1109_RBME_2022_3215678 crossref_primary_10_1016_j_jmbbm_2014_02_009 crossref_primary_10_1007_s00466_016_1268_0 crossref_primary_10_1016_j_cmpb_2021_106052 crossref_primary_10_1016_j_compbiomed_2015_04_013 crossref_primary_10_1007_s10439_023_03350_7 crossref_primary_10_1007_s11517_016_1602_x crossref_primary_10_1109_JBHI_2013_2272090 crossref_primary_10_1016_j_jbiomech_2013_05_005 crossref_primary_10_1259_bjr_62450556 crossref_primary_10_1002_cnm_70061 crossref_primary_10_1016_j_jbiomech_2021_110893 crossref_primary_10_1007_s10237_021_01529_2 crossref_primary_10_1016_j_cmpb_2018_06_007 crossref_primary_10_1016_j_jfluidstructs_2020_103050 crossref_primary_10_1002_cnm_2891 crossref_primary_10_1016_j_cmpb_2019_105185 crossref_primary_10_1007_s10554_019_01709_3 crossref_primary_10_3233_XST_17255 crossref_primary_10_1016_j_compmedimag_2014_09_002 crossref_primary_10_1016_j_icheatmasstransfer_2015_06_017 crossref_primary_10_1080_19942060_2021_2013322 crossref_primary_10_1007_s13239_024_00731_4 crossref_primary_10_1371_journal_pcbi_1012467 crossref_primary_10_1080_10255842_2012_744396 crossref_primary_10_1002_jmri_25240 crossref_primary_10_1016_j_clinbiomech_2018_10_023 crossref_primary_10_1080_24699322_2017_1389407 crossref_primary_10_1155_2015_628416 crossref_primary_10_1016_j_avsg_2021_12_014 crossref_primary_10_1016_j_artres_2018_11_002 crossref_primary_10_1007_s12206_022_0917_9 crossref_primary_10_3390_diagnostics14192204 crossref_primary_10_1080_10255842_2014_976812 crossref_primary_10_1007_s11517_023_02791_5 crossref_primary_10_1016_j_compbiomed_2015_06_009 crossref_primary_10_1016_j_medengphy_2020_10_004 crossref_primary_10_1002_cnm_2625 crossref_primary_10_1016_j_enganabound_2024_03_003 crossref_primary_10_3389_fbioe_2021_731924 crossref_primary_10_1016_j_cherd_2020_05_025 crossref_primary_10_1007_s00466_014_1049_6 crossref_primary_10_1038_s42003_021_01920_w crossref_primary_10_1038_s41598_021_92084_4 crossref_primary_10_1016_j_camwa_2017_04_012 crossref_primary_10_1016_j_jmmm_2021_168580 crossref_primary_10_1186_1475_925X_14_S1_S6 crossref_primary_10_1017_flo_2024_5 crossref_primary_10_1016_j_icheatmasstransfer_2012_04_009 crossref_primary_10_1098_rsos_242184 crossref_primary_10_3390_app12126200 crossref_primary_10_1007_s10237_022_01677_z crossref_primary_10_1016_j_jmmm_2015_10_020 crossref_primary_10_1177_10943420251351125 crossref_primary_10_1007_s13239_019_00403_8 crossref_primary_10_1016_j_bbe_2024_05_002 crossref_primary_10_1007_s12206_012_1008_0 crossref_primary_10_1016_j_icheatmasstransfer_2024_107857 crossref_primary_10_1177_15266028221091890 crossref_primary_10_1007_s11517_022_02572_6 crossref_primary_10_1088_2057_1976_ab323f crossref_primary_10_1093_eurheartj_ehz551 crossref_primary_10_1002_mp_16086 crossref_primary_10_1016_j_compchemeng_2010_09_006 crossref_primary_10_1007_s11517_018_1904_2 crossref_primary_10_1016_j_compbiomed_2021_104600 crossref_primary_10_1111_exsy_12951 crossref_primary_10_1007_s12046_024_02589_7 crossref_primary_10_1002_eng2_12955 crossref_primary_10_1111_j_1525_1594_2012_01519_x crossref_primary_10_1186_s12938_018_0497_1 crossref_primary_10_1371_journal_pone_0064564 crossref_primary_10_1016_j_compbiomed_2022_105672 crossref_primary_10_1063_5_0256403 crossref_primary_10_1016_j_cmpb_2025_108736 crossref_primary_10_1080_03091902_2022_2081736 crossref_primary_10_1007_s11517_020_02185_x |
| Cites_doi | 10.1115/1.1537736 10.1080/10255840701827412 10.1002/jmri.20798 10.1016/j.jbiomech.2005.03.003 10.1038/ncpcardio0298 10.1161/CIRCULATIONAHA.105.603050 10.1115/1.2720914 10.1114/1.1615577 10.1016/j.jbiomech.2006.09.003 10.1007/3-540-31184-X 10.1093/eurheartj/ehl575 10.1161/01.ATV.5.3.293 10.1007/11866763_54 10.1016/j.jbiomech.2007.06.023 10.1114/1.1537694 10.1114/1.1467925 10.1016/j.jbiomech.2007.11.029 10.1023/B:ABME.0000032457.10191.e0 10.1109/42.875199 10.1152/ajpheart.00510.2008 10.1115/1.2937744 10.2514/6.1982-998 10.2514/6.1989-366 10.1115/1.1614817 10.1114/1.1349703 10.1007/s00466-006-0065-6 10.1007/s00059-005-2642-4 10.1002/fld.1633 10.1615/CritRevBiomedEng.v29.i1.10 10.1016/j.cma.2005.11.011 10.1186/1476-7120-5-6 10.1113/jphysiol.1955.sp005276 10.1161/01.ATV.0000095976.40874.E0 10.1023/A:1010835316564 10.1038/2231159a0 10.1114/1.1560631 10.1016/j.jbiomech.2008.03.019 10.1001/jama.282.21.2035 10.1007/s10439-005-5630-1 10.1080/10255849908907986 |
| ContentType | Journal Article |
| Copyright | Copyright © 2009 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2009 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/cnm.1231 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics |
| EISSN | 1099-0887 |
| EndPage | 580 |
| ExternalDocumentID | 10_1002_cnm_1231 CNM1231 ark_67375_WNG_WMNQ859T_Q |
| Genre | article |
| GrantInformation_xml | – fundername: British Heart Foundation funderid: PG/04/078; FS/05/034 – fundername: Foundation for Circulatory Health funderid: ICCH/07/5015 – fundername: NIHR Biomedical Research Centre Funding Scheme |
| GroupedDBID | -~X .GA .Y3 10A 1L6 1OB 1OC 1ZS 31~ 4.4 51W 51X 52N 52O 52P 52S 52T 52W 52X 5GY 5VS 66C 6J9 7PT 8-1 8-4 8-5 930 A03 AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADEOM ADIZJ ADMGS ADNMO ADOZA AEFGJ AEIGN AEIMD AEUYR AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AI. AIDQK AIDYY AIQQE AITYG AIURR ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN BDRZF BRXPI BSCLL BY8 CO8 CS3 D-F DCZOG DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE G-S GBZZK GNP GODZA HBH HF~ HGLYW HHY HVGLF I-F JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M6O MEWTI MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM OIG P4D PALCI QB0 QRW RIWAO RJQFR ROL RYL SAMSI SUPJJ TN5 TUS UB1 VH1 WIB WIH WIK WQJ WXSBR XG1 XPP XV2 ZY4 ~02 AAHHS ABTAH ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI RWS WRC AAYXX CITATION O8X 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3341-12d29fa272c936c5bcb271b5b0c81b3e934047a3bd4202845c48abfee1ba99a53 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000265812800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1069-8299 |
| IngestDate | Sun Nov 09 14:39:58 EST 2025 Tue Nov 18 21:46:38 EST 2025 Sat Nov 29 06:28:03 EST 2025 Wed Jan 22 16:58:50 EST 2025 Tue Nov 11 03:32:41 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 5 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3341-12d29fa272c936c5bcb271b5b0c81b3e934047a3bd4202845c48abfee1ba99a53 |
| Notes | British Heart Foundation - No. PG/04/078; No. FS/05/034 Foundation for Circulatory Health - No. ICCH/07/5015 NIHR Biomedical Research Centre Funding Scheme ark:/67375/WNG-WMNQ859T-Q ArticleID:CNM1231 istex:B0C1264F30D3243DF0E1033E7684434C0A38A866 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 34194283 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_34194283 crossref_primary_10_1002_cnm_1231 crossref_citationtrail_10_1002_cnm_1231 wiley_primary_10_1002_cnm_1231_CNM1231 istex_primary_ark_67375_WNG_WMNQ859T_Q |
| PublicationCentury | 2000 |
| PublicationDate | May 2009 |
| PublicationDateYYYYMMDD | 2009-05-01 |
| PublicationDate_xml | – month: 05 year: 2009 text: May 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK |
| PublicationTitle | Communications in numerical methods in engineering |
| PublicationTitleAlternate | Commun. Numer. Meth. Engng |
| PublicationYear | 2009 |
| Publisher | John Wiley & Sons, Ltd |
| Publisher_xml | – name: John Wiley & Sons, Ltd |
| References | Myers JG, Moore JA, Ojha M, Johnston KW, Ethier CR. Factors influencing blood flow patterns in the human right coronary artery. Annals of Biomedical Engineering 2001; 29:12. Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta JJ, Einav S. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. Journal of Biomechanics 2008; 41:1111-1118. Slager CJ, Wentzel JJ, Gijsen FJH, Thury A, van der Wal AC, Schaar JA, Serruys PW. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nature Clinical Practice, Cardiovascular Medicine 2005; 2(9):456-464. Schaar AJ, de Korte CL, Mastik F, van Damme LCA, Krams R, Serruys PW, van der Steen AFW. Three-dimensional palpography of human coronary arteries. Herz 2005; 30:125-133. Scotti CM, Jimenez J, Muluk SC, Finol EA. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Computer Methods in Biomechanics and Biomedical Engineering 2008; 11(3):301-322. Thevenaz P. Interpolation revisited. IEEE Transactions on Medical Imaging 2000; 19(7):739-758. Holzapfel GA, Ogden RW. Mechanics of Biological Tissue. Springer: Berlin, 2006. Tada S, Tarbell JM. A computational study of flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress. Annals of Biomedical Engineering 2005; 33(9):1202-1212. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. Journal of the American Medical Association 1999; 2035-2042. Zeng D, Boutsianis E, Ammann M, Boomsma K, Wildermuth S, Poulikakos D. A study on the compliance of a right coronary artery and its impact on wall shear stress. Transactions of the ASME, Journal of Biomechanical Engineering 2008; 130:041014-1-041014-11. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation, positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 1985; 5(3):293-302. Karner G, Perktold K, Hofer M, Liepsch D. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. Computer Methods in Biomechanics and Biomedical Engineering 1999; 2(3):171-185. Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early atheroma in man. Nature 1969; 223:1159-1161. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Computational Mechanics 2006; 38:482-490. Nichols WW, O'Rourke MF. McDonald's Blood Flow in Arteries (5th edn). Hodder Arnold: London, 2005. Koshiba N, Ando J, Chen X, Hisada T. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. Transactions of the ASME, Journal of Biomechanical Engineering 2007; 129:374-385. Zeng D, Ding Z, Friedman MH, Ethier CR. Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering 2003; 31(4):420-429. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering 2006; 195:5685-5706. Glor FP, Long Q, Hughes AD, Augst AD, Ariff B, Thom SA, Verdonck PR, Xu XY. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Annals of Biomedical Engineering 2003; 31:142-151. Williamson SD, Lam Y, Younis HF, Huang H, Patel S, Kaazenpur-Mofrad MR, Kamm RD. On the sensitivity of wall stress in diseased arteries to variable material properties. Transactions of ASME, Journal of Biomechanical Engineering 2003; 125:147-155. Stone PH, Coskun AU, Kinlay S, Popma JJ, Sonka M, Wahle A, Yeghiazarians Y, Maynard C, Kuntz RE, Feldman CL. Regions of low endothelial shear stress ar the sites where coronary plaque progresses and vascular remodeling occurs in humans: an in vivo serial study. European Heart Journal 2007; 28:705-710. Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C. 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Annals of Biomedical Engineering 2004; 32(7):947-960. Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP. Numerical simulation of flow in mechanical heart valves: grid resolution and flow symmetry. Transactions of ASME, Journal of Biomechanical Engineering 2003; 125:709-718. Dempere-Marco L, Oubel E, Castro M, Putman C, Frangi A, Cebral J. CFD Analysis Incorporating the Influence of Wall Motion: Application to Intracranianl Aneurysms. Lecture Notes in Computer Science, vol. 4191. Springer: Berlin, 2006; 4191:438-445. Womersley JR. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. Journal of Physiology 1955; 127(3):553-563. Vorp DA. Biomechanics of abdominal aortic aneurysm. Journal of Biomechanics 2007; 40:1887-1902. Hadjiloizou N, Davies JE, Malik IS, Aguado-Sierra J, Willson K, Foale RA, Parker KH, Hughes AD, Francis DP, Mayet J. Differences in cardiac microcirculatory wave patterns between the proximal left mainstem and proximal right coronary artery. American Journal of Physiology, Heart and Circulatory Physiology 2008; 295:H1198-H1205. Haluska BA, Jeffriess L, Mottam PM, Carlier SG, Marwick TH. A new technique for assessing arterial pressure wave forms and central pressure with tissue Doppler. Cardiovascular Ultrasound 2007; 5:6. Tezduyar TE, Sathe S, Schwaab M, Conklin BS. Arterial fluid mechanics modeling with the stablized space-time fluid-structure interaction technique. International Journal for Numerical Methods in Fluids 2008; 57:601-629. Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J. Evidence of a dominant backward-propagating 'suction' wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 2006; 113:1768-1778. Zhu H, Friedman MH. Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arteriosclerosis, Thrombosis and Vascular Biology 2003; 23:2260-2265. Vande Geest JP, Sacks MS, Vorp DA. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. Journal of Biomechanics 2006; 39:1324-1334. Kock SA, Nygaard JV, Eldrup N, Fründ ET, Klaerke A, Paaske WP, Falk E, Yong Kim W. Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. Journal of Biomechanics 2008; 41:1651-1658. Tang D, Yang C, Kobayashi S, Zheng J, Vito RP. Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid-structure interaction model. Annals of Biomedical Engineering 2003; 31(10):1182-1193. Varghese A, Merrifield RD, Crowe LA, Collins SA, Keenan NGJ, Firmin DN, Yang GZ, Pennell DJ. Evaluation of carotid artery wall volume measurement using novel semiautomated analysis software. Journal of Magnetic Resonance Imaging 2006; 24:1401-1408. Li MX, Beech-Brandt JJ, John LR, Hoskins PR, Easson WJ. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenosis. Journal of Biomechanics 2007; 40:3715-3724. Ding Z, Zhu H, Friedman MH. Coronary artery dynamics in vivo. Annals of Biomedical Engineering 2002; 30(4):419-429. Holzapfel GA, Gasser TC. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity 2000; 61:1-48. Kleinstreuer C, Hyun S, Buchanan JRJ, Longest PW, Archie JPJ, Truskey GA. Hemodynamic parameters and early intimal thickening in branching blood vessels. Critical Reviews in Biomedical Engineering 2001; 29(1):1-64. 2007; 129 1985; 5 2002; 30 2006; 38 2006; 39 2006; 195 2008; 57 2006 2005 2008; 11 1999; 2 2001; 29 1969; 223 2003; 31 1999 2006; 113 2007; 28 2004; 32 2006; 4191 2000; 19 2006; 24 1955; 127 2000; 61 2005; 30 1982 2007; 5 2008; 41 2007; 40 2005; 2 2003; 125 2005; 33 2008; 130 2008; 295 1989 2003; 23 Nichols WW (e_1_2_1_7_2) 2005 e_1_2_1_41_2 e_1_2_1_40_2 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_28_2 e_1_2_1_29_2 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 Dempere‐Marco L (e_1_2_1_19_2) 2006 e_1_2_1_39_2 |
| References_xml | – reference: Vande Geest JP, Sacks MS, Vorp DA. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. Journal of Biomechanics 2006; 39:1324-1334. – reference: Holzapfel GA, Gasser TC. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity 2000; 61:1-48. – reference: Schaar AJ, de Korte CL, Mastik F, van Damme LCA, Krams R, Serruys PW, van der Steen AFW. Three-dimensional palpography of human coronary arteries. Herz 2005; 30:125-133. – reference: Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta JJ, Einav S. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. Journal of Biomechanics 2008; 41:1111-1118. – reference: Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early atheroma in man. Nature 1969; 223:1159-1161. – reference: Williamson SD, Lam Y, Younis HF, Huang H, Patel S, Kaazenpur-Mofrad MR, Kamm RD. On the sensitivity of wall stress in diseased arteries to variable material properties. Transactions of ASME, Journal of Biomechanical Engineering 2003; 125:147-155. – reference: Scotti CM, Jimenez J, Muluk SC, Finol EA. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Computer Methods in Biomechanics and Biomedical Engineering 2008; 11(3):301-322. – reference: Holzapfel GA, Ogden RW. Mechanics of Biological Tissue. Springer: Berlin, 2006. – reference: Kock SA, Nygaard JV, Eldrup N, Fründ ET, Klaerke A, Paaske WP, Falk E, Yong Kim W. Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. Journal of Biomechanics 2008; 41:1651-1658. – reference: Tada S, Tarbell JM. A computational study of flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress. Annals of Biomedical Engineering 2005; 33(9):1202-1212. – reference: Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. Journal of the American Medical Association 1999; 2035-2042. – reference: Myers JG, Moore JA, Ojha M, Johnston KW, Ethier CR. Factors influencing blood flow patterns in the human right coronary artery. Annals of Biomedical Engineering 2001; 29:12. – reference: Dempere-Marco L, Oubel E, Castro M, Putman C, Frangi A, Cebral J. CFD Analysis Incorporating the Influence of Wall Motion: Application to Intracranianl Aneurysms. Lecture Notes in Computer Science, vol. 4191. Springer: Berlin, 2006; 4191:438-445. – reference: Vorp DA. Biomechanics of abdominal aortic aneurysm. Journal of Biomechanics 2007; 40:1887-1902. – reference: Kleinstreuer C, Hyun S, Buchanan JRJ, Longest PW, Archie JPJ, Truskey GA. Hemodynamic parameters and early intimal thickening in branching blood vessels. Critical Reviews in Biomedical Engineering 2001; 29(1):1-64. – reference: Karner G, Perktold K, Hofer M, Liepsch D. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. Computer Methods in Biomechanics and Biomedical Engineering 1999; 2(3):171-185. – reference: Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J. Evidence of a dominant backward-propagating 'suction' wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 2006; 113:1768-1778. – reference: Tezduyar TE, Sathe S, Schwaab M, Conklin BS. Arterial fluid mechanics modeling with the stablized space-time fluid-structure interaction technique. International Journal for Numerical Methods in Fluids 2008; 57:601-629. – reference: Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C. 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Annals of Biomedical Engineering 2004; 32(7):947-960. – reference: Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation, positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 1985; 5(3):293-302. – reference: Womersley JR. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. Journal of Physiology 1955; 127(3):553-563. – reference: Koshiba N, Ando J, Chen X, Hisada T. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. Transactions of the ASME, Journal of Biomechanical Engineering 2007; 129:374-385. – reference: Tang D, Yang C, Kobayashi S, Zheng J, Vito RP. Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid-structure interaction model. Annals of Biomedical Engineering 2003; 31(10):1182-1193. – reference: Stone PH, Coskun AU, Kinlay S, Popma JJ, Sonka M, Wahle A, Yeghiazarians Y, Maynard C, Kuntz RE, Feldman CL. Regions of low endothelial shear stress ar the sites where coronary plaque progresses and vascular remodeling occurs in humans: an in vivo serial study. European Heart Journal 2007; 28:705-710. – reference: Zeng D, Boutsianis E, Ammann M, Boomsma K, Wildermuth S, Poulikakos D. A study on the compliance of a right coronary artery and its impact on wall shear stress. Transactions of the ASME, Journal of Biomechanical Engineering 2008; 130:041014-1-041014-11. – reference: Li MX, Beech-Brandt JJ, John LR, Hoskins PR, Easson WJ. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenosis. Journal of Biomechanics 2007; 40:3715-3724. – reference: Glor FP, Long Q, Hughes AD, Augst AD, Ariff B, Thom SA, Verdonck PR, Xu XY. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Annals of Biomedical Engineering 2003; 31:142-151. – reference: Nichols WW, O'Rourke MF. McDonald's Blood Flow in Arteries (5th edn). Hodder Arnold: London, 2005. – reference: Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Computational Mechanics 2006; 38:482-490. – reference: Varghese A, Merrifield RD, Crowe LA, Collins SA, Keenan NGJ, Firmin DN, Yang GZ, Pennell DJ. Evaluation of carotid artery wall volume measurement using novel semiautomated analysis software. Journal of Magnetic Resonance Imaging 2006; 24:1401-1408. – reference: Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP. Numerical simulation of flow in mechanical heart valves: grid resolution and flow symmetry. Transactions of ASME, Journal of Biomechanical Engineering 2003; 125:709-718. – reference: Slager CJ, Wentzel JJ, Gijsen FJH, Thury A, van der Wal AC, Schaar JA, Serruys PW. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nature Clinical Practice, Cardiovascular Medicine 2005; 2(9):456-464. – reference: Zhu H, Friedman MH. Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arteriosclerosis, Thrombosis and Vascular Biology 2003; 23:2260-2265. – reference: Hadjiloizou N, Davies JE, Malik IS, Aguado-Sierra J, Willson K, Foale RA, Parker KH, Hughes AD, Francis DP, Mayet J. Differences in cardiac microcirculatory wave patterns between the proximal left mainstem and proximal right coronary artery. American Journal of Physiology, Heart and Circulatory Physiology 2008; 295:H1198-H1205. – reference: Haluska BA, Jeffriess L, Mottam PM, Carlier SG, Marwick TH. A new technique for assessing arterial pressure wave forms and central pressure with tissue Doppler. Cardiovascular Ultrasound 2007; 5:6. – reference: Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering 2006; 195:5685-5706. – reference: Ding Z, Zhu H, Friedman MH. Coronary artery dynamics in vivo. Annals of Biomedical Engineering 2002; 30(4):419-429. – reference: Zeng D, Ding Z, Friedman MH, Ethier CR. Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering 2003; 31(4):420-429. – reference: Thevenaz P. Interpolation revisited. IEEE Transactions on Medical Imaging 2000; 19(7):739-758. – volume: 41 start-page: 1651 year: 2008 end-page: 1658 article-title: Mechanical stresses in carotid plaques using MRI‐based fluid–structure interaction models publication-title: Journal of Biomechanics – volume: 39 start-page: 1324 year: 2006 end-page: 1334 article-title: The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta publication-title: Journal of Biomechanics – volume: 2 start-page: 171 issue: 3 year: 1999 end-page: 185 article-title: Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 57 start-page: 601 year: 2008 end-page: 629 article-title: Arterial fluid mechanics modeling with the stablized space–time fluid–structure interaction technique publication-title: International Journal for Numerical Methods in Fluids – volume: 24 start-page: 1401 year: 2006 end-page: 1408 article-title: Evaluation of carotid artery wall volume measurement using novel semiautomated analysis software publication-title: Journal of Magnetic Resonance Imaging – year: 2005 – volume: 127 start-page: 553 issue: 3 year: 1955 end-page: 563 article-title: Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known publication-title: Journal of Physiology – volume: 40 start-page: 1887 year: 2007 end-page: 1902 article-title: Biomechanics of abdominal aortic aneurysm publication-title: Journal of Biomechanics – year: 1989 – volume: 19 start-page: 739 issue: 7 year: 2000 end-page: 758 article-title: Interpolation revisited publication-title: IEEE Transactions on Medical Imaging – volume: 195 start-page: 5685 year: 2006 end-page: 5706 article-title: A coupled momentum method for modeling blood flow in three‐dimensional deformable arteries publication-title: Computer Methods in Applied Mechanics and Engineering – start-page: 2035 year: 1999 end-page: 2042 article-title: Hemodynamic shear stress and its role in atherosclerosis publication-title: Journal of the American Medical Association – volume: 33 start-page: 1202 issue: 9 year: 2005 end-page: 1212 article-title: A computational study of flow in a compliant carotid bifurcation—stress phase angle correlation with shear stress publication-title: Annals of Biomedical Engineering – volume: 40 start-page: 3715 year: 2007 end-page: 3724 article-title: Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenosis publication-title: Journal of Biomechanics – volume: 32 start-page: 947 issue: 7 year: 2004 end-page: 960 article-title: 3D MRI‐based multicomponent FSI models for atherosclerotic plaques publication-title: Annals of Biomedical Engineering – volume: 130 start-page: 041014‐1 year: 2008 end-page: 041014‐11 article-title: A study on the compliance of a right coronary artery and its impact on wall shear stress publication-title: Transactions of the ASME, Journal of Biomechanical Engineering – volume: 23 start-page: 2260 year: 2003 end-page: 2265 article-title: Relationship between the dynamic geometry and wall thickness of a human coronary artery publication-title: Arteriosclerosis, Thrombosis and Vascular Biology – volume: 28 start-page: 705 year: 2007 end-page: 710 article-title: Regions of low endothelial shear stress ar the sites where coronary plaque progresses and vascular remodeling occurs in humans: an in vivo serial study publication-title: European Heart Journal – volume: 29 start-page: 1 issue: 1 year: 2001 end-page: 64 article-title: Hemodynamic parameters and early intimal thickening in branching blood vessels publication-title: Critical Reviews in Biomedical Engineering – volume: 125 start-page: 709 year: 2003 end-page: 718 article-title: Numerical simulation of flow in mechanical heart valves: grid resolution and flow symmetry publication-title: Transactions of ASME, Journal of Biomechanical Engineering – year: 1982 – volume: 113 start-page: 1768 year: 2006 end-page: 1778 article-title: Evidence of a dominant backward‐propagating ‘suction’ wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy publication-title: Circulation – volume: 41 start-page: 1111 year: 2008 end-page: 1118 article-title: Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling publication-title: Journal of Biomechanics – volume: 129 start-page: 374 year: 2007 end-page: 385 article-title: Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model publication-title: Transactions of the ASME, Journal of Biomechanical Engineering – volume: 30 start-page: 419 issue: 4 year: 2002 end-page: 429 article-title: Coronary artery dynamics in vivo publication-title: Annals of Biomedical Engineering – volume: 31 start-page: 142 year: 2003 end-page: 151 article-title: Reproducibility study of magnetic resonance image‐based computational fluid dynamics prediction of carotid bifurcation flow publication-title: Annals of Biomedical Engineering – volume: 38 start-page: 482 year: 2006 end-page: 490 article-title: Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures publication-title: Computational Mechanics – year: 2006 – volume: 4191 start-page: 438 year: 2006 end-page: 445 – volume: 125 start-page: 147 year: 2003 end-page: 155 article-title: On the sensitivity of wall stress in diseased arteries to variable material properties publication-title: Transactions of ASME, Journal of Biomechanical Engineering – volume: 29 start-page: 12 year: 2001 article-title: Factors influencing blood flow patterns in the human right coronary artery publication-title: Annals of Biomedical Engineering – volume: 2 start-page: 456 issue: 9 year: 2005 end-page: 464 article-title: The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications publication-title: Nature Clinical Practice, Cardiovascular Medicine – volume: 30 start-page: 125 year: 2005 end-page: 133 article-title: Three‐dimensional palpography of human coronary arteries publication-title: Herz – volume: 295 start-page: H1198 year: 2008 end-page: H1205 article-title: Differences in cardiac microcirculatory wave patterns between the proximal left mainstem and proximal right coronary artery publication-title: American Journal of Physiology, Heart and Circulatory Physiology – volume: 5 start-page: 6 year: 2007 article-title: A new technique for assessing arterial pressure wave forms and central pressure with tissue Doppler publication-title: Cardiovascular Ultrasound – volume: 223 start-page: 1159 year: 1969 end-page: 1161 article-title: Arterial wall shear and distribution of early atheroma in man publication-title: Nature – volume: 11 start-page: 301 issue: 3 year: 2008 end-page: 322 article-title: Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid–structure interaction publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 5 start-page: 293 issue: 3 year: 1985 end-page: 302 article-title: Pulsatile flow and atherosclerosis in the human carotid bifurcation, positive correlation between plaque location and low and oscillating shear stress publication-title: Arteriosclerosis – volume: 31 start-page: 420 issue: 4 year: 2003 end-page: 429 article-title: Effects of cardiac motion on right coronary artery hemodynamics publication-title: Annals of Biomedical Engineering – volume: 31 start-page: 1182 issue: 10 year: 2003 end-page: 1193 article-title: Effect of stenosis asymmetry on blood flow and artery compression: a three‐dimensional fluid–structure interaction model publication-title: Annals of Biomedical Engineering – volume: 61 start-page: 1 year: 2000 end-page: 48 article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models publication-title: Journal of Elasticity – ident: e_1_2_1_42_2 doi: 10.1115/1.1537736 – ident: e_1_2_1_11_2 doi: 10.1080/10255840701827412 – ident: e_1_2_1_28_2 doi: 10.1002/jmri.20798 – ident: e_1_2_1_39_2 doi: 10.1016/j.jbiomech.2005.03.003 – ident: e_1_2_1_5_2 doi: 10.1038/ncpcardio0298 – ident: e_1_2_1_33_2 doi: 10.1161/CIRCULATIONAHA.105.603050 – ident: e_1_2_1_17_2 doi: 10.1115/1.2720914 – ident: e_1_2_1_26_2 doi: 10.1114/1.1615577 – ident: e_1_2_1_41_2 doi: 10.1016/j.jbiomech.2006.09.003 – ident: e_1_2_1_32_2 doi: 10.1007/3-540-31184-X – ident: e_1_2_1_6_2 doi: 10.1093/eurheartj/ehl575 – ident: e_1_2_1_3_2 doi: 10.1161/01.ATV.5.3.293 – start-page: 438 volume-title: CFD Analysis Incorporating the Influence of Wall Motion: Application to Intracranianl Aneurysms year: 2006 ident: e_1_2_1_19_2 doi: 10.1007/11866763_54 – ident: e_1_2_1_25_2 doi: 10.1016/j.jbiomech.2007.06.023 – ident: e_1_2_1_37_2 doi: 10.1114/1.1537694 – ident: e_1_2_1_20_2 doi: 10.1114/1.1467925 – ident: e_1_2_1_24_2 doi: 10.1016/j.jbiomech.2007.11.029 – ident: e_1_2_1_16_2 doi: 10.1023/B:ABME.0000032457.10191.e0 – ident: e_1_2_1_27_2 doi: 10.1109/42.875199 – ident: e_1_2_1_34_2 doi: 10.1152/ajpheart.00510.2008 – ident: e_1_2_1_18_2 doi: 10.1115/1.2937744 – ident: e_1_2_1_30_2 doi: 10.2514/6.1982-998 – ident: e_1_2_1_31_2 doi: 10.2514/6.1989-366 – ident: e_1_2_1_9_2 doi: 10.1115/1.1614817 – ident: e_1_2_1_8_2 doi: 10.1114/1.1349703 – ident: e_1_2_1_14_2 doi: 10.1007/s00466-006-0065-6 – ident: e_1_2_1_21_2 doi: 10.1007/s00059-005-2642-4 – ident: e_1_2_1_15_2 doi: 10.1002/fld.1633 – ident: e_1_2_1_38_2 doi: 10.1615/CritRevBiomedEng.v29.i1.10 – ident: e_1_2_1_10_2 doi: 10.1016/j.cma.2005.11.011 – ident: e_1_2_1_36_2 doi: 10.1186/1476-7120-5-6 – ident: e_1_2_1_35_2 doi: 10.1113/jphysiol.1955.sp005276 – ident: e_1_2_1_29_2 doi: 10.1161/01.ATV.0000095976.40874.E0 – volume-title: McDonald's Blood Flow in Arteries year: 2005 ident: e_1_2_1_7_2 – ident: e_1_2_1_40_2 doi: 10.1023/A:1010835316564 – ident: e_1_2_1_2_2 doi: 10.1038/2231159a0 – ident: e_1_2_1_22_2 doi: 10.1114/1.1560631 – ident: e_1_2_1_23_2 doi: 10.1016/j.jbiomech.2008.03.019 – ident: e_1_2_1_4_2 doi: 10.1001/jama.282.21.2035 – ident: e_1_2_1_12_2 doi: 10.1007/s10439-005-5630-1 – ident: e_1_2_1_13_2 doi: 10.1080/10255849908907986 |
| SSID | ssj0009080 |
| Score | 1.7368165 |
| Snippet | Coupled fluid–structure interaction (FSI) analysis of the human right coronary artery (RCA) has been carried out to investigate the effects of wall compliance... Coupled fluid-structure interaction (FSI) analysis of the human right coronary artery (RCA) has been carried out to investigate the effects of wall compliance... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 565 |
| SubjectTerms | coronary atherosclerosis fluid-structure interaction physiological waveform |
| Title | Fluid-structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms |
| URI | https://api.istex.fr/ark:/67375/WNG-WMNQ859T-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1231 https://www.proquest.com/docview/34194283 |
| Volume | 25 |
| WOSCitedRecordID | wos000265812800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-0887 dateEnd: 20091231 omitProxy: false ssIdentifier: ssj0009080 issn: 1069-8299 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEICtarcHeoAWqNj-ulJVToHEsZP4iGi3PbBRqUBws2zHkRCQrTZd2t649VqJN-RJOuM4C0hUqtRLokgT27LH9ow9_kzIW5lVidS1i7iVFTzqJDLcmShLmXDcJIlN_EHhvbwsi-Nj-TlEVeJZmI4PsVhww57hx2vs4Nq02zfQUNucb8GwC57PkIHa8gEZvv8yPty7Qe7GRcciyGRUwKjbo2djtt3_e2cyGmK9_rhjad62V_2EM175n6I-JsvBzKQ7nV48IQ9cs0pWgslJQ4duV8mjWzxC-JosIK7tGvk1PpufVNeXVx1jdj5zFOESs-4oBNUBZ0KnNdU08FmvL3_j2U2MP6Le76cWEQlQdOqDR39SXPilfj2lH3Yphi1Z8AYgyYr6wFzM67u-cGhRt-vkcPzhYPdTFO5tiGwKk2KUsIrJWrOcWZlmVhhrWJ4YYWILRnLqZMpjnuvUVJyBecOF5YU2tXOJ0VJqkT4lg2bauA1CnTAiq6wuBDccfD3NTCydFeAIVdIZNiKbfQMqG6DmeLfGmepwzExB3Sus-xF5s5D82oE87pF553VgIaBnpxj4lgt1VH5UR5NyvxDyQO2PyOteSRR0R9xj0Y2bzluFeDxk2EFSXiP-mpfaLSf4fvavgs_JUreThcGWL8gAmt69JA_txbeTdvYqKP8f7TgOmw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBH1S4ScKBQqFheNRKCU2ji2EksTqiwFLEbUbRVe7Nsx5EqShZt2AK33rgi8Q_7S5jJY9tKICFxSRTJcSxnxp4Zjz8DPFFJESlT-kA4VeCljAIrvA2SmEsvbBS5qNkoPEnzPDs8VO_X4EW_F6blQ6wCbqQZzXhNCk4B6e1zaqirPj3HcRddn6FAKZIDGL76MN6fnDN3w6yFESQqyHDY7dmzId_u3700Gw2pY79dMjUvGqzNjDNe_6-23oQbnaHJXraScQvWfLUB653RyTqVrjfg-gUiIT5NVxjX-jb8GB8vj4qz018tZXa58IzwEot2MwQzHdCEzUtmWEdoPTv9Sbs3KQOJNZ4_cwRJwLazJn30O6PQL2siKv3AyyhxyaE_gFUWrEnNpW99NSeebOr6DuyPX892doPu5IbAxTgtBhEvuCoNT7lTceKkdZankZU2dGgmx17FIhSpiW0hOBo4QjqRGVt6H1mjlJHxJgyqeeXvAvPSyqRwJpPCCvT2DLeh8k6iK1Qob_kInvV_ULsOa06naxzrFsjMNfa9pr4fweNVyc8tyuMPZZ42QrAqYBYfKfUtlfogf6MPpvleJtVM741gq5cSjQpJqyym8vNlrQmQRxQ7rKoRib9-S-_kU7rf-9eCW3B1dzad6Mnb_N19uNaua1Hq5QMYoBj4h3DFnXw5qhePOk34DQPeEos |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3da9UwFMDD2BXRh02nw7upiyD6VNemSdvgk2xWxXvLJhvbW8hXYTh7x-3uNt_25qvgf7i_xHP6cbeBguBLS-E0Dek5yTnJyS-EvJSJi6QufcCtdHApo8Bwb4IkZsJzE0U2ajYKj9KiyA4P5c4CedvvhWn5EPMJN7SMpr9GA_cnrty8poba6tsb6Hch9BlwIROwysH2l3x_dM3cDbMWRpDIIINut2fPhmyzf_fWaDTAhr245WredFibESdf_q-6PiBLnaNJ37Wa8ZAs-GqFLHdOJ-1Mul4h928QCeFpPMe41o_Ij_x4duSuLn-1lNnZ1FPES0zbzRBUd0ATOimpph2h9eryJ-7exAwk2kT-1CIkAepOm_TR7xSnfmkzo9J3vBQTlyzEA1Cko01qLn7rXJ959Knrx2Q_f7-39THoTm4IbAzDYhAxx2SpWcqsjBMrjDUsjYwwoQU3OfYy5iFPdWwcZ-DgcGF5pk3pfWS0lFrEq2SxmlT-CaFeGJE4qzPBDYdoTzMTSm8FhEJOesOG5HX_B5XtsOZ4usaxaoHMTEHbK2z7IXkxlzxpUR5_kHnVKMFcQE-_YupbKtRB8UEdjIvdTMg9tTskG72WKDBIXGXRlZ_MaoWAPKTYQVGNSvz1W2qrGON97V8FN8jdne1cjT4Vn9fJvXZZCzMvn5JF0AL_jNyxZ6dH9fR5Zwi_AXcnEgY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid%E2%80%93structure+interaction+analysis+of+a+patient%E2%80%90specific+right+coronary+artery+with+physiological+velocity+and+pressure+waveforms&rft.jtitle=Communications+in+numerical+methods+in+engineering&rft.au=Torii%2C+Ryo&rft.au=Wood%2C+Nigel+B.&rft.au=Hadjiloizou%2C+Nearchos&rft.au=Dowsey%2C+Andrew+W.&rft.date=2009-05-01&rft.issn=1069-8299&rft.eissn=1099-0887&rft.volume=25&rft.issue=5&rft.spage=565&rft.epage=580&rft_id=info:doi/10.1002%2Fcnm.1231&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cnm_1231 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-8299&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-8299&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-8299&client=summon |