Fluid-structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms

Coupled fluid–structure interaction (FSI) analysis of the human right coronary artery (RCA) has been carried out to investigate the effects of wall compliance on coronary hemodynamics. A 3‐D model of a stenosed RCA was reconstructed based on multislice computerized tomography images. A velocity wave...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications in numerical methods in engineering Ročník 25; číslo 5; s. 565 - 580
Hlavní autori: Torii, Ryo, Wood, Nigel B., Hadjiloizou, Nearchos, Dowsey, Andrew W., Wright, Andrew R., Hughes, Alun D., Davies, Justin, Francis, Darrel P., Mayet, Jamil, Yang, Guang-Zhong, Thom, Simon A. McG, Xu, X. Yun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 01.05.2009
Predmet:
ISSN:1069-8299, 1099-0887
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Coupled fluid–structure interaction (FSI) analysis of the human right coronary artery (RCA) has been carried out to investigate the effects of wall compliance on coronary hemodynamics. A 3‐D model of a stenosed RCA was reconstructed based on multislice computerized tomography images. A velocity waveform in the proximal RCA and a pressure waveform in the distal RCA of a patient with a severe stenosis were acquired with a catheter delivered wire probe and applied as boundary conditions. The arterial wall was modeled as a Mooney–Rivlin hyperelastic material. The predicted maximum wall displacement (3.85 mm) was comparable with the vessel diameter (∼4 mm), but the diameter variation was much smaller, 0.134 mm at the stenosis and 0.486 mm in the distal region. Comparison of the computational results between the FSI and rigid‐wall models showed that the instantaneous wall shear stress (WSS) distributions were affected by diameter variation in the arterial wall; increasing systolic blood pressure dilated the vessel and consequently lowered WSS, whereas the opposite occurred when pressure started to decrease. However, the effects of wall compliance on time‐averaged WSS (TAWSS) and oscillatory shear index (OSI) were insignificant (4.5 and 2.7% difference in maximum TAWSS and OSI, respectively). Copyright © 2009 John Wiley & Sons, Ltd.
AbstractList Coupled fluid–structure interaction (FSI) analysis of the human right coronary artery (RCA) has been carried out to investigate the effects of wall compliance on coronary hemodynamics. A 3‐D model of a stenosed RCA was reconstructed based on multislice computerized tomography images. A velocity waveform in the proximal RCA and a pressure waveform in the distal RCA of a patient with a severe stenosis were acquired with a catheter delivered wire probe and applied as boundary conditions. The arterial wall was modeled as a Mooney–Rivlin hyperelastic material. The predicted maximum wall displacement (3.85 mm) was comparable with the vessel diameter (∼4 mm), but the diameter variation was much smaller, 0.134 mm at the stenosis and 0.486 mm in the distal region. Comparison of the computational results between the FSI and rigid‐wall models showed that the instantaneous wall shear stress (WSS) distributions were affected by diameter variation in the arterial wall; increasing systolic blood pressure dilated the vessel and consequently lowered WSS, whereas the opposite occurred when pressure started to decrease. However, the effects of wall compliance on time‐averaged WSS (TAWSS) and oscillatory shear index (OSI) were insignificant (4.5 and 2.7% difference in maximum TAWSS and OSI, respectively). Copyright © 2009 John Wiley & Sons, Ltd.
Coupled fluid-structure interaction (FSI) analysis of the human right coronary artery (RCA) has been carried out to investigate the effects of wall compliance on coronary hemodynamics. A 3-D model of a stenosed RCA was reconstructed based on multislice computerized tomography images. A velocity waveform in the proximal RCA and a pressure waveform in the distal RCA of a patient with a severe stenosis were acquired with a catheter delivered wire probe and applied as boundary conditions. The arterial wall was modeled as a Mooney-Rivlin hyperelastic material. The predicted maximum wall displacement (3.85 mm) was comparable with the vessel diameter (4 mm), but the diameter variation was much smaller, 0.134 mm at the stenosis and 0.486 mm in the distal region. Comparison of the computational results between the FSI and rigid-wall models showed that the instantaneous wall shear stress (WSS) distributions were affected by diameter variation in the arterial wall; increasing systolic blood pressure dilated the vessel and consequently lowered WSS, whereas the opposite occurred when pressure started to decrease. However, the effects of wall compliance on time-averaged WSS (TAWSS) and oscillatory shear index (OSI) were insignificant (4.5 and 2.7% difference in maximum TAWSS and OSI, respectively).
Author Thom, Simon A. McG
Francis, Darrel P.
Mayet, Jamil
Dowsey, Andrew W.
Wright, Andrew R.
Xu, X. Yun
Yang, Guang-Zhong
Hughes, Alun D.
Wood, Nigel B.
Hadjiloizou, Nearchos
Davies, Justin
Torii, Ryo
Author_xml – sequence: 1
  givenname: Ryo
  surname: Torii
  fullname: Torii, Ryo
  email: r.torii@imperial.ac.uk
  organization: Department of Chemical Engineering, Imperial College London, London, U.K
– sequence: 2
  givenname: Nigel B.
  surname: Wood
  fullname: Wood, Nigel B.
  organization: Department of Chemical Engineering, Imperial College London, London, U.K
– sequence: 3
  givenname: Nearchos
  surname: Hadjiloizou
  fullname: Hadjiloizou, Nearchos
  organization: International Centre for Circulatory Health, St. Mary's Hospital and Imperial College London, London, U.K
– sequence: 4
  givenname: Andrew W.
  surname: Dowsey
  fullname: Dowsey, Andrew W.
  organization: Royal Society/Wolfson Medical Image Computing Laboratory, Imperial College London, London, U.K
– sequence: 5
  givenname: Andrew R.
  surname: Wright
  fullname: Wright, Andrew R.
  organization: Department of Radiology, St. Mary's Hospital and Imperial College NHS Trust, London, U.K
– sequence: 6
  givenname: Alun D.
  surname: Hughes
  fullname: Hughes, Alun D.
  organization: International Centre for Circulatory Health, St. Mary's Hospital and Imperial College London, London, U.K
– sequence: 7
  givenname: Justin
  surname: Davies
  fullname: Davies, Justin
  organization: International Centre for Circulatory Health, St. Mary's Hospital and Imperial College London, London, U.K
– sequence: 8
  givenname: Darrel P.
  surname: Francis
  fullname: Francis, Darrel P.
  organization: International Centre for Circulatory Health, St. Mary's Hospital and Imperial College London, London, U.K
– sequence: 9
  givenname: Jamil
  surname: Mayet
  fullname: Mayet, Jamil
  organization: International Centre for Circulatory Health, St. Mary's Hospital and Imperial College London, London, U.K
– sequence: 10
  givenname: Guang-Zhong
  surname: Yang
  fullname: Yang, Guang-Zhong
  organization: Royal Society/Wolfson Medical Image Computing Laboratory, Imperial College London, London, U.K
– sequence: 11
  givenname: Simon A. McG
  surname: Thom
  fullname: Thom, Simon A. McG
  organization: International Centre for Circulatory Health, St. Mary's Hospital and Imperial College London, London, U.K
– sequence: 12
  givenname: X. Yun
  surname: Xu
  fullname: Xu, X. Yun
  organization: Department of Chemical Engineering, Imperial College London, London, U.K
BookMark eNp1kE9v1DAUxC1UJNqCxEfwCXHJ1n-STXxEK1qQ2kWVinq0XrwvXYPXDrbT7Z754jjaCgkEp_cOv5nRzBk58cEjIW85W3DGxIXxuwUXkr8gp5wpVbGua0_mf6mqTij1ipyl9I0xpljHTsnPSzfZTZVynEyeIlLrM0Yw2QZPwYM7JJtoGCjQEbJFn6s0orGDNTTah22mJsTgIR4oxKI80L3NWzpuiy648GANOPqILhibC-I3dIyY0py0h0ccQtyl1-TlAC7hm-d7Tr5efrxbfaquv1x9Xn24royUNa-42Ag1gGiFUXJpmt70ouV90zPT8V6ikjWrW5D9phZMdHVj6g76AZH3oBQ08py8O_qOMfyYMGW9s8mgc-AxTEmXEFWLThbw_RE0MaQUcdBjtLvSUXOm55V1WVnPKxd08RdaisK8Xo5g3b8E1VGwtw4P_zXWq_XNn7xNGZ9-8xC_62Ur20bfr6_0_c36tmvUnb6VvwBGT6Ln
CitedBy_id crossref_primary_10_1371_journal_pone_0247438
crossref_primary_10_1177_09544119251355753
crossref_primary_10_1080_03091902_2018_1447034
crossref_primary_10_1080_10255842_2014_921682
crossref_primary_10_1016_j_bbe_2018_11_006
crossref_primary_10_1007_s12206_018_0321_7
crossref_primary_10_1007_s10439_010_0008_4
crossref_primary_10_1007_s10439_022_03007_x
crossref_primary_10_3390_fluids6020053
crossref_primary_10_1016_j_bbe_2019_02_005
crossref_primary_10_1002_fld_2319
crossref_primary_10_1088_2057_1976_ad7030
crossref_primary_10_1016_j_medengphy_2011_10_001
crossref_primary_10_1109_TBME_2014_2310954
crossref_primary_10_1109_RBME_2022_3215678
crossref_primary_10_1016_j_jmbbm_2014_02_009
crossref_primary_10_1007_s00466_016_1268_0
crossref_primary_10_1016_j_cmpb_2021_106052
crossref_primary_10_1016_j_compbiomed_2015_04_013
crossref_primary_10_1007_s10439_023_03350_7
crossref_primary_10_1007_s11517_016_1602_x
crossref_primary_10_1109_JBHI_2013_2272090
crossref_primary_10_1016_j_jbiomech_2013_05_005
crossref_primary_10_1259_bjr_62450556
crossref_primary_10_1002_cnm_70061
crossref_primary_10_1016_j_jbiomech_2021_110893
crossref_primary_10_1007_s10237_021_01529_2
crossref_primary_10_1016_j_cmpb_2018_06_007
crossref_primary_10_1016_j_jfluidstructs_2020_103050
crossref_primary_10_1002_cnm_2891
crossref_primary_10_1016_j_cmpb_2019_105185
crossref_primary_10_1007_s10554_019_01709_3
crossref_primary_10_3233_XST_17255
crossref_primary_10_1016_j_compmedimag_2014_09_002
crossref_primary_10_1016_j_icheatmasstransfer_2015_06_017
crossref_primary_10_1080_19942060_2021_2013322
crossref_primary_10_1007_s13239_024_00731_4
crossref_primary_10_1371_journal_pcbi_1012467
crossref_primary_10_1080_10255842_2012_744396
crossref_primary_10_1002_jmri_25240
crossref_primary_10_1016_j_clinbiomech_2018_10_023
crossref_primary_10_1080_24699322_2017_1389407
crossref_primary_10_1155_2015_628416
crossref_primary_10_1016_j_avsg_2021_12_014
crossref_primary_10_1016_j_artres_2018_11_002
crossref_primary_10_1007_s12206_022_0917_9
crossref_primary_10_3390_diagnostics14192204
crossref_primary_10_1080_10255842_2014_976812
crossref_primary_10_1007_s11517_023_02791_5
crossref_primary_10_1016_j_compbiomed_2015_06_009
crossref_primary_10_1016_j_medengphy_2020_10_004
crossref_primary_10_1002_cnm_2625
crossref_primary_10_1016_j_enganabound_2024_03_003
crossref_primary_10_3389_fbioe_2021_731924
crossref_primary_10_1016_j_cherd_2020_05_025
crossref_primary_10_1007_s00466_014_1049_6
crossref_primary_10_1038_s42003_021_01920_w
crossref_primary_10_1038_s41598_021_92084_4
crossref_primary_10_1016_j_camwa_2017_04_012
crossref_primary_10_1016_j_jmmm_2021_168580
crossref_primary_10_1186_1475_925X_14_S1_S6
crossref_primary_10_1017_flo_2024_5
crossref_primary_10_1016_j_icheatmasstransfer_2012_04_009
crossref_primary_10_1098_rsos_242184
crossref_primary_10_3390_app12126200
crossref_primary_10_1007_s10237_022_01677_z
crossref_primary_10_1016_j_jmmm_2015_10_020
crossref_primary_10_1177_10943420251351125
crossref_primary_10_1007_s13239_019_00403_8
crossref_primary_10_1016_j_bbe_2024_05_002
crossref_primary_10_1007_s12206_012_1008_0
crossref_primary_10_1016_j_icheatmasstransfer_2024_107857
crossref_primary_10_1177_15266028221091890
crossref_primary_10_1007_s11517_022_02572_6
crossref_primary_10_1088_2057_1976_ab323f
crossref_primary_10_1093_eurheartj_ehz551
crossref_primary_10_1002_mp_16086
crossref_primary_10_1016_j_compchemeng_2010_09_006
crossref_primary_10_1007_s11517_018_1904_2
crossref_primary_10_1016_j_compbiomed_2021_104600
crossref_primary_10_1111_exsy_12951
crossref_primary_10_1007_s12046_024_02589_7
crossref_primary_10_1002_eng2_12955
crossref_primary_10_1111_j_1525_1594_2012_01519_x
crossref_primary_10_1186_s12938_018_0497_1
crossref_primary_10_1371_journal_pone_0064564
crossref_primary_10_1016_j_compbiomed_2022_105672
crossref_primary_10_1063_5_0256403
crossref_primary_10_1016_j_cmpb_2025_108736
crossref_primary_10_1080_03091902_2022_2081736
crossref_primary_10_1007_s11517_020_02185_x
Cites_doi 10.1115/1.1537736
10.1080/10255840701827412
10.1002/jmri.20798
10.1016/j.jbiomech.2005.03.003
10.1038/ncpcardio0298
10.1161/CIRCULATIONAHA.105.603050
10.1115/1.2720914
10.1114/1.1615577
10.1016/j.jbiomech.2006.09.003
10.1007/3-540-31184-X
10.1093/eurheartj/ehl575
10.1161/01.ATV.5.3.293
10.1007/11866763_54
10.1016/j.jbiomech.2007.06.023
10.1114/1.1537694
10.1114/1.1467925
10.1016/j.jbiomech.2007.11.029
10.1023/B:ABME.0000032457.10191.e0
10.1109/42.875199
10.1152/ajpheart.00510.2008
10.1115/1.2937744
10.2514/6.1982-998
10.2514/6.1989-366
10.1115/1.1614817
10.1114/1.1349703
10.1007/s00466-006-0065-6
10.1007/s00059-005-2642-4
10.1002/fld.1633
10.1615/CritRevBiomedEng.v29.i1.10
10.1016/j.cma.2005.11.011
10.1186/1476-7120-5-6
10.1113/jphysiol.1955.sp005276
10.1161/01.ATV.0000095976.40874.E0
10.1023/A:1010835316564
10.1038/2231159a0
10.1114/1.1560631
10.1016/j.jbiomech.2008.03.019
10.1001/jama.282.21.2035
10.1007/s10439-005-5630-1
10.1080/10255849908907986
ContentType Journal Article
Copyright Copyright © 2009 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2009 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/cnm.1231
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1099-0887
EndPage 580
ExternalDocumentID 10_1002_cnm_1231
CNM1231
ark_67375_WNG_WMNQ859T_Q
Genre article
GrantInformation_xml – fundername: British Heart Foundation
  funderid: PG/04/078; FS/05/034
– fundername: Foundation for Circulatory Health
  funderid: ICCH/07/5015
– fundername: NIHR Biomedical Research Centre Funding Scheme
GroupedDBID -~X
.GA
.Y3
10A
1L6
1OB
1OC
1ZS
31~
4.4
51W
51X
52N
52O
52P
52S
52T
52W
52X
5GY
5VS
66C
6J9
7PT
8-1
8-4
8-5
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
AEFGJ
AEIGN
AEIMD
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
BDRZF
BRXPI
BSCLL
BY8
CO8
CS3
D-F
DCZOG
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
GBZZK
GNP
GODZA
HBH
HF~
HGLYW
HHY
HVGLF
I-F
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M6O
MEWTI
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P4D
PALCI
QB0
QRW
RIWAO
RJQFR
ROL
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
WIB
WIH
WIK
WQJ
WXSBR
XG1
XPP
XV2
ZY4
~02
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
RWS
WRC
AAYXX
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3341-12d29fa272c936c5bcb271b5b0c81b3e934047a3bd4202845c48abfee1ba99a53
IEDL.DBID DRFUL
ISICitedReferencesCount 130
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000265812800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1069-8299
IngestDate Sun Nov 09 14:39:58 EST 2025
Tue Nov 18 21:46:38 EST 2025
Sat Nov 29 06:28:03 EST 2025
Wed Jan 22 16:58:50 EST 2025
Tue Nov 11 03:32:41 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3341-12d29fa272c936c5bcb271b5b0c81b3e934047a3bd4202845c48abfee1ba99a53
Notes British Heart Foundation - No. PG/04/078; No. FS/05/034
Foundation for Circulatory Health - No. ICCH/07/5015
NIHR Biomedical Research Centre Funding Scheme
ark:/67375/WNG-WMNQ859T-Q
ArticleID:CNM1231
istex:B0C1264F30D3243DF0E1033E7684434C0A38A866
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34194283
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_34194283
crossref_primary_10_1002_cnm_1231
crossref_citationtrail_10_1002_cnm_1231
wiley_primary_10_1002_cnm_1231_CNM1231
istex_primary_ark_67375_WNG_WMNQ859T_Q
PublicationCentury 2000
PublicationDate May 2009
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: May 2009
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Communications in numerical methods in engineering
PublicationTitleAlternate Commun. Numer. Meth. Engng
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Myers JG, Moore JA, Ojha M, Johnston KW, Ethier CR. Factors influencing blood flow patterns in the human right coronary artery. Annals of Biomedical Engineering 2001; 29:12.
Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta JJ, Einav S. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. Journal of Biomechanics 2008; 41:1111-1118.
Slager CJ, Wentzel JJ, Gijsen FJH, Thury A, van der Wal AC, Schaar JA, Serruys PW. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nature Clinical Practice, Cardiovascular Medicine 2005; 2(9):456-464.
Schaar AJ, de Korte CL, Mastik F, van Damme LCA, Krams R, Serruys PW, van der Steen AFW. Three-dimensional palpography of human coronary arteries. Herz 2005; 30:125-133.
Scotti CM, Jimenez J, Muluk SC, Finol EA. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Computer Methods in Biomechanics and Biomedical Engineering 2008; 11(3):301-322.
Thevenaz P. Interpolation revisited. IEEE Transactions on Medical Imaging 2000; 19(7):739-758.
Holzapfel GA, Ogden RW. Mechanics of Biological Tissue. Springer: Berlin, 2006.
Tada S, Tarbell JM. A computational study of flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress. Annals of Biomedical Engineering 2005; 33(9):1202-1212.
Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. Journal of the American Medical Association 1999; 2035-2042.
Zeng D, Boutsianis E, Ammann M, Boomsma K, Wildermuth S, Poulikakos D. A study on the compliance of a right coronary artery and its impact on wall shear stress. Transactions of the ASME, Journal of Biomechanical Engineering 2008; 130:041014-1-041014-11.
Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation, positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 1985; 5(3):293-302.
Karner G, Perktold K, Hofer M, Liepsch D. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. Computer Methods in Biomechanics and Biomedical Engineering 1999; 2(3):171-185.
Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early atheroma in man. Nature 1969; 223:1159-1161.
Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Computational Mechanics 2006; 38:482-490.
Nichols WW, O'Rourke MF. McDonald's Blood Flow in Arteries (5th edn). Hodder Arnold: London, 2005.
Koshiba N, Ando J, Chen X, Hisada T. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. Transactions of the ASME, Journal of Biomechanical Engineering 2007; 129:374-385.
Zeng D, Ding Z, Friedman MH, Ethier CR. Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering 2003; 31(4):420-429.
Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering 2006; 195:5685-5706.
Glor FP, Long Q, Hughes AD, Augst AD, Ariff B, Thom SA, Verdonck PR, Xu XY. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Annals of Biomedical Engineering 2003; 31:142-151.
Williamson SD, Lam Y, Younis HF, Huang H, Patel S, Kaazenpur-Mofrad MR, Kamm RD. On the sensitivity of wall stress in diseased arteries to variable material properties. Transactions of ASME, Journal of Biomechanical Engineering 2003; 125:147-155.
Stone PH, Coskun AU, Kinlay S, Popma JJ, Sonka M, Wahle A, Yeghiazarians Y, Maynard C, Kuntz RE, Feldman CL. Regions of low endothelial shear stress ar the sites where coronary plaque progresses and vascular remodeling occurs in humans: an in vivo serial study. European Heart Journal 2007; 28:705-710.
Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C. 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Annals of Biomedical Engineering 2004; 32(7):947-960.
Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP. Numerical simulation of flow in mechanical heart valves: grid resolution and flow symmetry. Transactions of ASME, Journal of Biomechanical Engineering 2003; 125:709-718.
Dempere-Marco L, Oubel E, Castro M, Putman C, Frangi A, Cebral J. CFD Analysis Incorporating the Influence of Wall Motion: Application to Intracranianl Aneurysms. Lecture Notes in Computer Science, vol. 4191. Springer: Berlin, 2006; 4191:438-445.
Womersley JR. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. Journal of Physiology 1955; 127(3):553-563.
Vorp DA. Biomechanics of abdominal aortic aneurysm. Journal of Biomechanics 2007; 40:1887-1902.
Hadjiloizou N, Davies JE, Malik IS, Aguado-Sierra J, Willson K, Foale RA, Parker KH, Hughes AD, Francis DP, Mayet J. Differences in cardiac microcirculatory wave patterns between the proximal left mainstem and proximal right coronary artery. American Journal of Physiology, Heart and Circulatory Physiology 2008; 295:H1198-H1205.
Haluska BA, Jeffriess L, Mottam PM, Carlier SG, Marwick TH. A new technique for assessing arterial pressure wave forms and central pressure with tissue Doppler. Cardiovascular Ultrasound 2007; 5:6.
Tezduyar TE, Sathe S, Schwaab M, Conklin BS. Arterial fluid mechanics modeling with the stablized space-time fluid-structure interaction technique. International Journal for Numerical Methods in Fluids 2008; 57:601-629.
Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J. Evidence of a dominant backward-propagating 'suction' wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 2006; 113:1768-1778.
Zhu H, Friedman MH. Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arteriosclerosis, Thrombosis and Vascular Biology 2003; 23:2260-2265.
Vande Geest JP, Sacks MS, Vorp DA. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. Journal of Biomechanics 2006; 39:1324-1334.
Kock SA, Nygaard JV, Eldrup N, Fründ ET, Klaerke A, Paaske WP, Falk E, Yong Kim W. Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. Journal of Biomechanics 2008; 41:1651-1658.
Tang D, Yang C, Kobayashi S, Zheng J, Vito RP. Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid-structure interaction model. Annals of Biomedical Engineering 2003; 31(10):1182-1193.
Varghese A, Merrifield RD, Crowe LA, Collins SA, Keenan NGJ, Firmin DN, Yang GZ, Pennell DJ. Evaluation of carotid artery wall volume measurement using novel semiautomated analysis software. Journal of Magnetic Resonance Imaging 2006; 24:1401-1408.
Li MX, Beech-Brandt JJ, John LR, Hoskins PR, Easson WJ. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenosis. Journal of Biomechanics 2007; 40:3715-3724.
Ding Z, Zhu H, Friedman MH. Coronary artery dynamics in vivo. Annals of Biomedical Engineering 2002; 30(4):419-429.
Holzapfel GA, Gasser TC. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity 2000; 61:1-48.
Kleinstreuer C, Hyun S, Buchanan JRJ, Longest PW, Archie JPJ, Truskey GA. Hemodynamic parameters and early intimal thickening in branching blood vessels. Critical Reviews in Biomedical Engineering 2001; 29(1):1-64.
2007; 129
1985; 5
2002; 30
2006; 38
2006; 39
2006; 195
2008; 57
2006
2005
2008; 11
1999; 2
2001; 29
1969; 223
2003; 31
1999
2006; 113
2007; 28
2004; 32
2006; 4191
2000; 19
2006; 24
1955; 127
2000; 61
2005; 30
1982
2007; 5
2008; 41
2007; 40
2005; 2
2003; 125
2005; 33
2008; 130
2008; 295
1989
2003; 23
Nichols WW (e_1_2_1_7_2) 2005
e_1_2_1_41_2
e_1_2_1_40_2
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
Dempere‐Marco L (e_1_2_1_19_2) 2006
e_1_2_1_39_2
References_xml – reference: Vande Geest JP, Sacks MS, Vorp DA. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. Journal of Biomechanics 2006; 39:1324-1334.
– reference: Holzapfel GA, Gasser TC. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity 2000; 61:1-48.
– reference: Schaar AJ, de Korte CL, Mastik F, van Damme LCA, Krams R, Serruys PW, van der Steen AFW. Three-dimensional palpography of human coronary arteries. Herz 2005; 30:125-133.
– reference: Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta JJ, Einav S. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. Journal of Biomechanics 2008; 41:1111-1118.
– reference: Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early atheroma in man. Nature 1969; 223:1159-1161.
– reference: Williamson SD, Lam Y, Younis HF, Huang H, Patel S, Kaazenpur-Mofrad MR, Kamm RD. On the sensitivity of wall stress in diseased arteries to variable material properties. Transactions of ASME, Journal of Biomechanical Engineering 2003; 125:147-155.
– reference: Scotti CM, Jimenez J, Muluk SC, Finol EA. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Computer Methods in Biomechanics and Biomedical Engineering 2008; 11(3):301-322.
– reference: Holzapfel GA, Ogden RW. Mechanics of Biological Tissue. Springer: Berlin, 2006.
– reference: Kock SA, Nygaard JV, Eldrup N, Fründ ET, Klaerke A, Paaske WP, Falk E, Yong Kim W. Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. Journal of Biomechanics 2008; 41:1651-1658.
– reference: Tada S, Tarbell JM. A computational study of flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress. Annals of Biomedical Engineering 2005; 33(9):1202-1212.
– reference: Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. Journal of the American Medical Association 1999; 2035-2042.
– reference: Myers JG, Moore JA, Ojha M, Johnston KW, Ethier CR. Factors influencing blood flow patterns in the human right coronary artery. Annals of Biomedical Engineering 2001; 29:12.
– reference: Dempere-Marco L, Oubel E, Castro M, Putman C, Frangi A, Cebral J. CFD Analysis Incorporating the Influence of Wall Motion: Application to Intracranianl Aneurysms. Lecture Notes in Computer Science, vol. 4191. Springer: Berlin, 2006; 4191:438-445.
– reference: Vorp DA. Biomechanics of abdominal aortic aneurysm. Journal of Biomechanics 2007; 40:1887-1902.
– reference: Kleinstreuer C, Hyun S, Buchanan JRJ, Longest PW, Archie JPJ, Truskey GA. Hemodynamic parameters and early intimal thickening in branching blood vessels. Critical Reviews in Biomedical Engineering 2001; 29(1):1-64.
– reference: Karner G, Perktold K, Hofer M, Liepsch D. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. Computer Methods in Biomechanics and Biomedical Engineering 1999; 2(3):171-185.
– reference: Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J. Evidence of a dominant backward-propagating 'suction' wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 2006; 113:1768-1778.
– reference: Tezduyar TE, Sathe S, Schwaab M, Conklin BS. Arterial fluid mechanics modeling with the stablized space-time fluid-structure interaction technique. International Journal for Numerical Methods in Fluids 2008; 57:601-629.
– reference: Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C. 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Annals of Biomedical Engineering 2004; 32(7):947-960.
– reference: Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation, positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 1985; 5(3):293-302.
– reference: Womersley JR. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. Journal of Physiology 1955; 127(3):553-563.
– reference: Koshiba N, Ando J, Chen X, Hisada T. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. Transactions of the ASME, Journal of Biomechanical Engineering 2007; 129:374-385.
– reference: Tang D, Yang C, Kobayashi S, Zheng J, Vito RP. Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid-structure interaction model. Annals of Biomedical Engineering 2003; 31(10):1182-1193.
– reference: Stone PH, Coskun AU, Kinlay S, Popma JJ, Sonka M, Wahle A, Yeghiazarians Y, Maynard C, Kuntz RE, Feldman CL. Regions of low endothelial shear stress ar the sites where coronary plaque progresses and vascular remodeling occurs in humans: an in vivo serial study. European Heart Journal 2007; 28:705-710.
– reference: Zeng D, Boutsianis E, Ammann M, Boomsma K, Wildermuth S, Poulikakos D. A study on the compliance of a right coronary artery and its impact on wall shear stress. Transactions of the ASME, Journal of Biomechanical Engineering 2008; 130:041014-1-041014-11.
– reference: Li MX, Beech-Brandt JJ, John LR, Hoskins PR, Easson WJ. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenosis. Journal of Biomechanics 2007; 40:3715-3724.
– reference: Glor FP, Long Q, Hughes AD, Augst AD, Ariff B, Thom SA, Verdonck PR, Xu XY. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Annals of Biomedical Engineering 2003; 31:142-151.
– reference: Nichols WW, O'Rourke MF. McDonald's Blood Flow in Arteries (5th edn). Hodder Arnold: London, 2005.
– reference: Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Computational Mechanics 2006; 38:482-490.
– reference: Varghese A, Merrifield RD, Crowe LA, Collins SA, Keenan NGJ, Firmin DN, Yang GZ, Pennell DJ. Evaluation of carotid artery wall volume measurement using novel semiautomated analysis software. Journal of Magnetic Resonance Imaging 2006; 24:1401-1408.
– reference: Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP. Numerical simulation of flow in mechanical heart valves: grid resolution and flow symmetry. Transactions of ASME, Journal of Biomechanical Engineering 2003; 125:709-718.
– reference: Slager CJ, Wentzel JJ, Gijsen FJH, Thury A, van der Wal AC, Schaar JA, Serruys PW. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nature Clinical Practice, Cardiovascular Medicine 2005; 2(9):456-464.
– reference: Zhu H, Friedman MH. Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arteriosclerosis, Thrombosis and Vascular Biology 2003; 23:2260-2265.
– reference: Hadjiloizou N, Davies JE, Malik IS, Aguado-Sierra J, Willson K, Foale RA, Parker KH, Hughes AD, Francis DP, Mayet J. Differences in cardiac microcirculatory wave patterns between the proximal left mainstem and proximal right coronary artery. American Journal of Physiology, Heart and Circulatory Physiology 2008; 295:H1198-H1205.
– reference: Haluska BA, Jeffriess L, Mottam PM, Carlier SG, Marwick TH. A new technique for assessing arterial pressure wave forms and central pressure with tissue Doppler. Cardiovascular Ultrasound 2007; 5:6.
– reference: Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering 2006; 195:5685-5706.
– reference: Ding Z, Zhu H, Friedman MH. Coronary artery dynamics in vivo. Annals of Biomedical Engineering 2002; 30(4):419-429.
– reference: Zeng D, Ding Z, Friedman MH, Ethier CR. Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering 2003; 31(4):420-429.
– reference: Thevenaz P. Interpolation revisited. IEEE Transactions on Medical Imaging 2000; 19(7):739-758.
– volume: 41
  start-page: 1651
  year: 2008
  end-page: 1658
  article-title: Mechanical stresses in carotid plaques using MRI‐based fluid–structure interaction models
  publication-title: Journal of Biomechanics
– volume: 39
  start-page: 1324
  year: 2006
  end-page: 1334
  article-title: The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta
  publication-title: Journal of Biomechanics
– volume: 2
  start-page: 171
  issue: 3
  year: 1999
  end-page: 185
  article-title: Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– volume: 57
  start-page: 601
  year: 2008
  end-page: 629
  article-title: Arterial fluid mechanics modeling with the stablized space–time fluid–structure interaction technique
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 24
  start-page: 1401
  year: 2006
  end-page: 1408
  article-title: Evaluation of carotid artery wall volume measurement using novel semiautomated analysis software
  publication-title: Journal of Magnetic Resonance Imaging
– year: 2005
– volume: 127
  start-page: 553
  issue: 3
  year: 1955
  end-page: 563
  article-title: Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known
  publication-title: Journal of Physiology
– volume: 40
  start-page: 1887
  year: 2007
  end-page: 1902
  article-title: Biomechanics of abdominal aortic aneurysm
  publication-title: Journal of Biomechanics
– year: 1989
– volume: 19
  start-page: 739
  issue: 7
  year: 2000
  end-page: 758
  article-title: Interpolation revisited
  publication-title: IEEE Transactions on Medical Imaging
– volume: 195
  start-page: 5685
  year: 2006
  end-page: 5706
  article-title: A coupled momentum method for modeling blood flow in three‐dimensional deformable arteries
  publication-title: Computer Methods in Applied Mechanics and Engineering
– start-page: 2035
  year: 1999
  end-page: 2042
  article-title: Hemodynamic shear stress and its role in atherosclerosis
  publication-title: Journal of the American Medical Association
– volume: 33
  start-page: 1202
  issue: 9
  year: 2005
  end-page: 1212
  article-title: A computational study of flow in a compliant carotid bifurcation—stress phase angle correlation with shear stress
  publication-title: Annals of Biomedical Engineering
– volume: 40
  start-page: 3715
  year: 2007
  end-page: 3724
  article-title: Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenosis
  publication-title: Journal of Biomechanics
– volume: 32
  start-page: 947
  issue: 7
  year: 2004
  end-page: 960
  article-title: 3D MRI‐based multicomponent FSI models for atherosclerotic plaques
  publication-title: Annals of Biomedical Engineering
– volume: 130
  start-page: 041014‐1
  year: 2008
  end-page: 041014‐11
  article-title: A study on the compliance of a right coronary artery and its impact on wall shear stress
  publication-title: Transactions of the ASME, Journal of Biomechanical Engineering
– volume: 23
  start-page: 2260
  year: 2003
  end-page: 2265
  article-title: Relationship between the dynamic geometry and wall thickness of a human coronary artery
  publication-title: Arteriosclerosis, Thrombosis and Vascular Biology
– volume: 28
  start-page: 705
  year: 2007
  end-page: 710
  article-title: Regions of low endothelial shear stress ar the sites where coronary plaque progresses and vascular remodeling occurs in humans: an in vivo serial study
  publication-title: European Heart Journal
– volume: 29
  start-page: 1
  issue: 1
  year: 2001
  end-page: 64
  article-title: Hemodynamic parameters and early intimal thickening in branching blood vessels
  publication-title: Critical Reviews in Biomedical Engineering
– volume: 125
  start-page: 709
  year: 2003
  end-page: 718
  article-title: Numerical simulation of flow in mechanical heart valves: grid resolution and flow symmetry
  publication-title: Transactions of ASME, Journal of Biomechanical Engineering
– year: 1982
– volume: 113
  start-page: 1768
  year: 2006
  end-page: 1778
  article-title: Evidence of a dominant backward‐propagating ‘suction’ wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy
  publication-title: Circulation
– volume: 41
  start-page: 1111
  year: 2008
  end-page: 1118
  article-title: Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling
  publication-title: Journal of Biomechanics
– volume: 129
  start-page: 374
  year: 2007
  end-page: 385
  article-title: Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model
  publication-title: Transactions of the ASME, Journal of Biomechanical Engineering
– volume: 30
  start-page: 419
  issue: 4
  year: 2002
  end-page: 429
  article-title: Coronary artery dynamics in vivo
  publication-title: Annals of Biomedical Engineering
– volume: 31
  start-page: 142
  year: 2003
  end-page: 151
  article-title: Reproducibility study of magnetic resonance image‐based computational fluid dynamics prediction of carotid bifurcation flow
  publication-title: Annals of Biomedical Engineering
– volume: 38
  start-page: 482
  year: 2006
  end-page: 490
  article-title: Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures
  publication-title: Computational Mechanics
– year: 2006
– volume: 4191
  start-page: 438
  year: 2006
  end-page: 445
– volume: 125
  start-page: 147
  year: 2003
  end-page: 155
  article-title: On the sensitivity of wall stress in diseased arteries to variable material properties
  publication-title: Transactions of ASME, Journal of Biomechanical Engineering
– volume: 29
  start-page: 12
  year: 2001
  article-title: Factors influencing blood flow patterns in the human right coronary artery
  publication-title: Annals of Biomedical Engineering
– volume: 2
  start-page: 456
  issue: 9
  year: 2005
  end-page: 464
  article-title: The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications
  publication-title: Nature Clinical Practice, Cardiovascular Medicine
– volume: 30
  start-page: 125
  year: 2005
  end-page: 133
  article-title: Three‐dimensional palpography of human coronary arteries
  publication-title: Herz
– volume: 295
  start-page: H1198
  year: 2008
  end-page: H1205
  article-title: Differences in cardiac microcirculatory wave patterns between the proximal left mainstem and proximal right coronary artery
  publication-title: American Journal of Physiology, Heart and Circulatory Physiology
– volume: 5
  start-page: 6
  year: 2007
  article-title: A new technique for assessing arterial pressure wave forms and central pressure with tissue Doppler
  publication-title: Cardiovascular Ultrasound
– volume: 223
  start-page: 1159
  year: 1969
  end-page: 1161
  article-title: Arterial wall shear and distribution of early atheroma in man
  publication-title: Nature
– volume: 11
  start-page: 301
  issue: 3
  year: 2008
  end-page: 322
  article-title: Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid–structure interaction
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– volume: 5
  start-page: 293
  issue: 3
  year: 1985
  end-page: 302
  article-title: Pulsatile flow and atherosclerosis in the human carotid bifurcation, positive correlation between plaque location and low and oscillating shear stress
  publication-title: Arteriosclerosis
– volume: 31
  start-page: 420
  issue: 4
  year: 2003
  end-page: 429
  article-title: Effects of cardiac motion on right coronary artery hemodynamics
  publication-title: Annals of Biomedical Engineering
– volume: 31
  start-page: 1182
  issue: 10
  year: 2003
  end-page: 1193
  article-title: Effect of stenosis asymmetry on blood flow and artery compression: a three‐dimensional fluid–structure interaction model
  publication-title: Annals of Biomedical Engineering
– volume: 61
  start-page: 1
  year: 2000
  end-page: 48
  article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models
  publication-title: Journal of Elasticity
– ident: e_1_2_1_42_2
  doi: 10.1115/1.1537736
– ident: e_1_2_1_11_2
  doi: 10.1080/10255840701827412
– ident: e_1_2_1_28_2
  doi: 10.1002/jmri.20798
– ident: e_1_2_1_39_2
  doi: 10.1016/j.jbiomech.2005.03.003
– ident: e_1_2_1_5_2
  doi: 10.1038/ncpcardio0298
– ident: e_1_2_1_33_2
  doi: 10.1161/CIRCULATIONAHA.105.603050
– ident: e_1_2_1_17_2
  doi: 10.1115/1.2720914
– ident: e_1_2_1_26_2
  doi: 10.1114/1.1615577
– ident: e_1_2_1_41_2
  doi: 10.1016/j.jbiomech.2006.09.003
– ident: e_1_2_1_32_2
  doi: 10.1007/3-540-31184-X
– ident: e_1_2_1_6_2
  doi: 10.1093/eurheartj/ehl575
– ident: e_1_2_1_3_2
  doi: 10.1161/01.ATV.5.3.293
– start-page: 438
  volume-title: CFD Analysis Incorporating the Influence of Wall Motion: Application to Intracranianl Aneurysms
  year: 2006
  ident: e_1_2_1_19_2
  doi: 10.1007/11866763_54
– ident: e_1_2_1_25_2
  doi: 10.1016/j.jbiomech.2007.06.023
– ident: e_1_2_1_37_2
  doi: 10.1114/1.1537694
– ident: e_1_2_1_20_2
  doi: 10.1114/1.1467925
– ident: e_1_2_1_24_2
  doi: 10.1016/j.jbiomech.2007.11.029
– ident: e_1_2_1_16_2
  doi: 10.1023/B:ABME.0000032457.10191.e0
– ident: e_1_2_1_27_2
  doi: 10.1109/42.875199
– ident: e_1_2_1_34_2
  doi: 10.1152/ajpheart.00510.2008
– ident: e_1_2_1_18_2
  doi: 10.1115/1.2937744
– ident: e_1_2_1_30_2
  doi: 10.2514/6.1982-998
– ident: e_1_2_1_31_2
  doi: 10.2514/6.1989-366
– ident: e_1_2_1_9_2
  doi: 10.1115/1.1614817
– ident: e_1_2_1_8_2
  doi: 10.1114/1.1349703
– ident: e_1_2_1_14_2
  doi: 10.1007/s00466-006-0065-6
– ident: e_1_2_1_21_2
  doi: 10.1007/s00059-005-2642-4
– ident: e_1_2_1_15_2
  doi: 10.1002/fld.1633
– ident: e_1_2_1_38_2
  doi: 10.1615/CritRevBiomedEng.v29.i1.10
– ident: e_1_2_1_10_2
  doi: 10.1016/j.cma.2005.11.011
– ident: e_1_2_1_36_2
  doi: 10.1186/1476-7120-5-6
– ident: e_1_2_1_35_2
  doi: 10.1113/jphysiol.1955.sp005276
– ident: e_1_2_1_29_2
  doi: 10.1161/01.ATV.0000095976.40874.E0
– volume-title: McDonald's Blood Flow in Arteries
  year: 2005
  ident: e_1_2_1_7_2
– ident: e_1_2_1_40_2
  doi: 10.1023/A:1010835316564
– ident: e_1_2_1_2_2
  doi: 10.1038/2231159a0
– ident: e_1_2_1_22_2
  doi: 10.1114/1.1560631
– ident: e_1_2_1_23_2
  doi: 10.1016/j.jbiomech.2008.03.019
– ident: e_1_2_1_4_2
  doi: 10.1001/jama.282.21.2035
– ident: e_1_2_1_12_2
  doi: 10.1007/s10439-005-5630-1
– ident: e_1_2_1_13_2
  doi: 10.1080/10255849908907986
SSID ssj0009080
Score 1.7368165
Snippet Coupled fluid–structure interaction (FSI) analysis of the human right coronary artery (RCA) has been carried out to investigate the effects of wall compliance...
Coupled fluid-structure interaction (FSI) analysis of the human right coronary artery (RCA) has been carried out to investigate the effects of wall compliance...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 565
SubjectTerms coronary atherosclerosis
fluid-structure interaction
physiological waveform
Title Fluid-structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms
URI https://api.istex.fr/ark:/67375/WNG-WMNQ859T-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1231
https://www.proquest.com/docview/34194283
Volume 25
WOSCitedRecordID wos000265812800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-0887
  dateEnd: 20091231
  omitProxy: false
  ssIdentifier: ssj0009080
  issn: 1069-8299
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEICtarcHeoAWqNj-ulJVToHEsZP4iGi3PbBRqUBws2zHkRCQrTZd2t649VqJN-RJOuM4C0hUqtRLokgT27LH9ow9_kzIW5lVidS1i7iVFTzqJDLcmShLmXDcJIlN_EHhvbwsi-Nj-TlEVeJZmI4PsVhww57hx2vs4Nq02zfQUNucb8GwC57PkIHa8gEZvv8yPty7Qe7GRcciyGRUwKjbo2djtt3_e2cyGmK9_rhjad62V_2EM175n6I-JsvBzKQ7nV48IQ9cs0pWgslJQ4duV8mjWzxC-JosIK7tGvk1PpufVNeXVx1jdj5zFOESs-4oBNUBZ0KnNdU08FmvL3_j2U2MP6Le76cWEQlQdOqDR39SXPilfj2lH3Yphi1Z8AYgyYr6wFzM67u-cGhRt-vkcPzhYPdTFO5tiGwKk2KUsIrJWrOcWZlmVhhrWJ4YYWILRnLqZMpjnuvUVJyBecOF5YU2tXOJ0VJqkT4lg2bauA1CnTAiq6wuBDccfD3NTCydFeAIVdIZNiKbfQMqG6DmeLfGmepwzExB3Sus-xF5s5D82oE87pF553VgIaBnpxj4lgt1VH5UR5NyvxDyQO2PyOteSRR0R9xj0Y2bzluFeDxk2EFSXiP-mpfaLSf4fvavgs_JUreThcGWL8gAmt69JA_txbeTdvYqKP8f7TgOmw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBH1S4ScKBQqFheNRKCU2ji2EksTqiwFLEbUbRVe7Nsx5EqShZt2AK33rgi8Q_7S5jJY9tKICFxSRTJcSxnxp4Zjz8DPFFJESlT-kA4VeCljAIrvA2SmEsvbBS5qNkoPEnzPDs8VO_X4EW_F6blQ6wCbqQZzXhNCk4B6e1zaqirPj3HcRddn6FAKZIDGL76MN6fnDN3w6yFESQqyHDY7dmzId_u3700Gw2pY79dMjUvGqzNjDNe_6-23oQbnaHJXraScQvWfLUB653RyTqVrjfg-gUiIT5NVxjX-jb8GB8vj4qz018tZXa58IzwEot2MwQzHdCEzUtmWEdoPTv9Sbs3KQOJNZ4_cwRJwLazJn30O6PQL2siKv3AyyhxyaE_gFUWrEnNpW99NSeebOr6DuyPX892doPu5IbAxTgtBhEvuCoNT7lTceKkdZankZU2dGgmx17FIhSpiW0hOBo4QjqRGVt6H1mjlJHxJgyqeeXvAvPSyqRwJpPCCvT2DLeh8k6iK1Qob_kInvV_ULsOa06naxzrFsjMNfa9pr4fweNVyc8tyuMPZZ42QrAqYBYfKfUtlfogf6MPpvleJtVM741gq5cSjQpJqyym8vNlrQmQRxQ7rKoRib9-S-_kU7rf-9eCW3B1dzad6Mnb_N19uNaua1Hq5QMYoBj4h3DFnXw5qhePOk34DQPeEos
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3da9UwFMDD2BXRh02nw7upiyD6VNemSdvgk2xWxXvLJhvbW8hXYTh7x-3uNt_25qvgf7i_xHP6cbeBguBLS-E0Dek5yTnJyS-EvJSJi6QufcCtdHApo8Bwb4IkZsJzE0U2ajYKj9KiyA4P5c4CedvvhWn5EPMJN7SMpr9GA_cnrty8poba6tsb6Hch9BlwIROwysH2l3x_dM3cDbMWRpDIIINut2fPhmyzf_fWaDTAhr245WredFibESdf_q-6PiBLnaNJ37Wa8ZAs-GqFLHdOJ-1Mul4h928QCeFpPMe41o_Ij_x4duSuLn-1lNnZ1FPES0zbzRBUd0ATOimpph2h9eryJ-7exAwk2kT-1CIkAepOm_TR7xSnfmkzo9J3vBQTlyzEA1Cko01qLn7rXJ959Knrx2Q_f7-39THoTm4IbAzDYhAxx2SpWcqsjBMrjDUsjYwwoQU3OfYy5iFPdWwcZ-DgcGF5pk3pfWS0lFrEq2SxmlT-CaFeGJE4qzPBDYdoTzMTSm8FhEJOesOG5HX_B5XtsOZ4usaxaoHMTEHbK2z7IXkxlzxpUR5_kHnVKMFcQE-_YupbKtRB8UEdjIvdTMg9tTskG72WKDBIXGXRlZ_MaoWAPKTYQVGNSvz1W2qrGON97V8FN8jdne1cjT4Vn9fJvXZZCzMvn5JF0AL_jNyxZ6dH9fR5Zwi_AXcnEgY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid%E2%80%93structure+interaction+analysis+of+a+patient%E2%80%90specific+right+coronary+artery+with+physiological+velocity+and+pressure+waveforms&rft.jtitle=Communications+in+numerical+methods+in+engineering&rft.au=Torii%2C+Ryo&rft.au=Wood%2C+Nigel+B.&rft.au=Hadjiloizou%2C+Nearchos&rft.au=Dowsey%2C+Andrew+W.&rft.date=2009-05-01&rft.issn=1069-8299&rft.eissn=1099-0887&rft.volume=25&rft.issue=5&rft.spage=565&rft.epage=580&rft_id=info:doi/10.1002%2Fcnm.1231&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cnm_1231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-8299&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-8299&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-8299&client=summon