Optimal PID controller tuning using stochastic programming techniques

We argue that stochastic programming provides a powerful framework to tune and analyze the performance limits of controllers. In particular, stochastic programming formulations can be used to identify controller settings that remain robust across diverse scenarios (disturbances, set‐points, and mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal Jg. 64; H. 8; S. 2997 - 3010
Hauptverfasser: Renteria, Jose A., Cao, Yankai, Dowling, Alexander W., Zavala, Victor M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York American Institute of Chemical Engineers 01.08.2018
Schlagworte:
ISSN:0001-1541, 1547-5905
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We argue that stochastic programming provides a powerful framework to tune and analyze the performance limits of controllers. In particular, stochastic programming formulations can be used to identify controller settings that remain robust across diverse scenarios (disturbances, set‐points, and modeling errors) observed in real‐time operations. We also discuss how to use historical data and sampling techniques to construct operational scenarios and inference analysis techniques to provide statistical guarantees on limiting controller performance. Under the proposed framework, it is also possible to use risk metrics to handle extreme (rare) events and stochastic dominance concepts to conduct systematic benchmarking studies. We provide numerical studies to illustrate the concepts and to demonstrate that modern modeling and local/global optimization tools can tackle large‐scale applications. The proposed work also opens the door to data‐based controller tuning strategies that can be implemented in real‐time operations. © 2017 American Institute of Chemical Engineers AIChE J, 64: 2997–3010, 2018
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.16030