Large Intelligent Surface-Assisted Wireless Communication Exploiting Statistical CSI

Large intelligent surface (LIS)-assisted wireless communications have drawn attention worldwide. With the use of low-cost LIS on building walls, signals can be reflected by the LIS and sent out along desired directions by controlling its phases, thereby providing supplementary links for wireless com...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on vehicular technology Ročník 68; číslo 8; s. 8238 - 8242
Hlavní autoři: Han, Yu, Tang, Wankai, Jin, Shi, Wen, Chao-Kai, Ma, Xiaoli
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9545, 1939-9359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Large intelligent surface (LIS)-assisted wireless communications have drawn attention worldwide. With the use of low-cost LIS on building walls, signals can be reflected by the LIS and sent out along desired directions by controlling its phases, thereby providing supplementary links for wireless communication systems. In this paper, we evaluate the performance of an LIS-assisted large-scale antenna system by formulating a tight upper bound of the ergodic spectral efficiency and investigate the effect of the phase shifts on the ergodic spectral efficiency in different propagation scenarios. In particular, we propose an optimal phase shift design based on the upper bound of the ergodic spectral efficiency and statistical channel state information. Furthermore, we derive the requirement on the quantization bits of the LIS to promise an acceptable spectral efficiency degradation. Numerical results show that using the proposed phase shift design can achieve the maximum ergodic spectral efficiency, and a 2-bit quantizer is sufficient to ensure spectral efficiency degradation of no more than 1 bit/s/Hz.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2019.2923997