A Modified Bayesian Filter for Randomly Delayed Measurements

The traditional Bayesian approximation framework for filtering in discrete time systems assumes that the measurement is available at every time instant. But in practice, the measurements could be randomly delayed. In the literature, the problem has been examined and solution is provided by restricti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automatic control Ročník 62; číslo 1; s. 419 - 424
Hlavní autori: Singh, Abhinoy Kumar, Date, Paresh, Bhaumik, Shovan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9286, 1558-2523
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The traditional Bayesian approximation framework for filtering in discrete time systems assumes that the measurement is available at every time instant. But in practice, the measurements could be randomly delayed. In the literature, the problem has been examined and solution is provided by restricting the maximum number of delay to one or two time steps. This technical note develops an approach to deal with the filtering problems with an arbitrary number of delays in measurement. Pursuing this objective, traditional Bayesian approximation to nonlinear filtering problem is modified by reformulating the expressions of mean and covariances which appear during the measurement update. We use the cubature quadrature rule to evaluate the multivariate integral expressions for the mean vector and the covariance matrix which appear in the developed filtering algorithm. We compare the new algorithm which accounts for delay with the existing CQKF heuristics on two different examples and demonstrate how accounting for a random delay improves the filtering performance.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2016.2531418