Parallel algorithm for solving coupled algebraic Lyapunov equations of discrete-time jump linear systems

A parallel iterative scheme for solving coupled algebraic Lyapunov equations of discrete-time jump linear systems with Markovian transitions is introduced. The algorithm is computationally efficient since it operates on reduced-order decoupled algebraic discrete Lyapunov equations. Furthermore, the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & mathematics with applications (1987) Ročník 30; číslo 7; s. 1 - 4
Hlavní autoři: Borno, I., Gajic, Z.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.10.1995
Elsevier
Témata:
ISSN:0898-1221, 1873-7668
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A parallel iterative scheme for solving coupled algebraic Lyapunov equations of discrete-time jump linear systems with Markovian transitions is introduced. The algorithm is computationally efficient since it operates on reduced-order decoupled algebraic discrete Lyapunov equations. Furthermore, the solutions at every iteration are computed by elementary matrix operations. Hence, the number of operations is minimal. Monotonicity of convergence is established under the existence conditions of unique positive solutions.
ISSN:0898-1221
1873-7668
DOI:10.1016/0898-1221(95)00119-J