Dual-Loop Tube-Based Robust Model Predictive Attitude Tracking Control for Spacecraft With System Constraints and Additive Disturbances

In this article, the problem of optimal time-varying attitude tracking control for rigid spacecraft with system constraints and unknown additive disturbances is considered. Through the design of a new nonlinear tube-based robust model predictive control (TRMPC) algorithm, a dual-loop cascaded tracki...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on industrial electronics (1982) Ročník 69; číslo 4; s. 4022 - 4033
Hlavní autori: Chai, Runqi, Tsourdos, Antonios, Gao, Huijun, Xia, Yuanqing, Chai, Senchun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0278-0046, 1557-9948
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this article, the problem of optimal time-varying attitude tracking control for rigid spacecraft with system constraints and unknown additive disturbances is considered. Through the design of a new nonlinear tube-based robust model predictive control (TRMPC) algorithm, a dual-loop cascaded tracking control framework is established. The proposed TRMPC algorithm explicitly considers the effect of disturbances and applies tightened system constraints to predict the motion of the nominal system. The obtained optimal control action is then combined with a nonlinear feedback law such that the actual system trajectories can always be steered within a tube region centered around the nominal solution. To facilitate the recursive feasibility of the optimization process and guarantee the input-to-state stability of the tracking control process, the terminal controller and the corresponding terminal invariant set are also constructed. The effectiveness of using the proposed dual-loop TRMPC control scheme to track reference attitude trajectories is validated by experimental studies. A number of comparative studies were carried out, and the obtained results reveal that the proposed design is able to achieve more promising constraint handling and attitude tracking performance than that of the other newly developed methods investigated in this research.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2021.3076729