Artificial Intelligence Enabled Radio Propagation for Communications-Part II: Scenario Identification and Channel Modeling

This two-part paper investigates the application of artificial intelligence (AI) and, in particular, machine learning (ML) to the study of wireless propagation channels. In Part I of this article, we introduced AI and ML and provided a comprehensive survey on ML-enabled channel characterization and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on antennas and propagation Ročník 70; číslo 6; s. 3955 - 3969
Hlavní autori: Huang, Chen, He, Ruisi, Ai, Bo, Molisch, Andreas F., Lau, Buon Kiong, Haneda, Katsuyuki, Liu, Bo, Wang, Cheng-Xiang, Yang, Mi, Oestges, Claude, Zhong, Zhangdui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-926X, 1558-2221
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This two-part paper investigates the application of artificial intelligence (AI) and, in particular, machine learning (ML) to the study of wireless propagation channels. In Part I of this article, we introduced AI and ML and provided a comprehensive survey on ML-enabled channel characterization and antenna-channel optimization, and in this part (Part II), we review the state-of-the-art literature on scenario identification and channel modeling here. In particular, the key ideas of ML for scenario identification and channel modeling/prediction are presented, and the widely used ML methods for propagation scenario identification and channel modeling and prediction are analyzed and compared. Based on the state of the art, the future challenges of AI-/ML-based channel data processing techniques are given as well.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2022.3149665