Artificial Intelligence Enabled Radio Propagation for Communications-Part II: Scenario Identification and Channel Modeling
This two-part paper investigates the application of artificial intelligence (AI) and, in particular, machine learning (ML) to the study of wireless propagation channels. In Part I of this article, we introduced AI and ML and provided a comprehensive survey on ML-enabled channel characterization and...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on antennas and propagation Jg. 70; H. 6; S. 3955 - 3969 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-926X, 1558-2221 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This two-part paper investigates the application of artificial intelligence (AI) and, in particular, machine learning (ML) to the study of wireless propagation channels. In Part I of this article, we introduced AI and ML and provided a comprehensive survey on ML-enabled channel characterization and antenna-channel optimization, and in this part (Part II), we review the state-of-the-art literature on scenario identification and channel modeling here. In particular, the key ideas of ML for scenario identification and channel modeling/prediction are presented, and the widely used ML methods for propagation scenario identification and channel modeling and prediction are analyzed and compared. Based on the state of the art, the future challenges of AI-/ML-based channel data processing techniques are given as well. |
|---|---|
| AbstractList | This two-part paper investigates the application of artificial intelligence (AI) and, in particular, machine learning (ML) to the study of wireless propagation channels. In Part I of this article, we introduced AI and ML and provided a comprehensive survey on ML-enabled channel characterization and antenna-channel optimization, and in this part (Part II), we review the state-of-the-art literature on scenario identification and channel modeling here. In particular, the key ideas of ML for scenario identification and channel modeling/prediction are presented, and the widely used ML methods for propagation scenario identification and channel modeling and prediction are analyzed and compared. Based on the state of the art, the future challenges of AI-/ML-based channel data processing techniques are given as well. |
| Author | Lau, Buon Kiong Molisch, Andreas F. Liu, Bo Huang, Chen Zhong, Zhangdui He, Ruisi Wang, Cheng-Xiang Yang, Mi Oestges, Claude Ai, Bo Haneda, Katsuyuki |
| Author_xml | – sequence: 1 givenname: Chen orcidid: 0000-0002-3949-2693 surname: Huang fullname: Huang, Chen email: huangchen@pmlabs.com.cn organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Ruisi orcidid: 0000-0003-4135-3227 surname: He fullname: He, Ruisi email: ruisi.he@bjtu.edu.cn organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Broadband Mobile Information Communications, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Bo orcidid: 0000-0001-6850-0595 surname: Ai fullname: Ai, Bo email: aibo@ieee.org organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China – sequence: 4 givenname: Andreas F. orcidid: 0000-0002-4779-4763 surname: Molisch fullname: Molisch, Andreas F. email: molisch@usc.edu organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA – sequence: 5 givenname: Buon Kiong orcidid: 0000-0002-9203-2629 surname: Lau fullname: Lau, Buon Kiong email: bklau@ieee.org organization: Department of Electrical and Information Technology, Lund University, Lund, Sweden – sequence: 6 givenname: Katsuyuki orcidid: 0000-0002-4778-6405 surname: Haneda fullname: Haneda, Katsuyuki email: katsuyuki.haneda@aalto.fi organization: Department of Radio Science and Engineering, Aalto University, Espoo, Finland – sequence: 7 givenname: Bo orcidid: 0000-0002-3093-4571 surname: Liu fullname: Liu, Bo email: Bo.Liu@glasgow.ac.uk organization: School of Engineering, University of Glasgow, Glasgow, U.K – sequence: 8 givenname: Cheng-Xiang orcidid: 0000-0002-9729-9592 surname: Wang fullname: Wang, Cheng-Xiang email: chxwang@seu.edu.cn organization: Purple Mountain Laboratories, Nanjing, China – sequence: 9 givenname: Mi surname: Yang fullname: Yang, Mi email: myang@bjtu.edu.cn organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Broadband Mobile Information Communications, Beijing Jiaotong University, Beijing, China – sequence: 10 givenname: Claude orcidid: 0000-0002-0902-4565 surname: Oestges fullname: Oestges, Claude email: claude.oestges@uclouvain.be organization: Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universite Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium – sequence: 11 givenname: Zhangdui orcidid: 0000-0001-8889-7374 surname: Zhong fullname: Zhong, Zhangdui email: zhdzhong@bjtu.edu.cn organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Broadband Mobile Information Communications, Beijing Jiaotong University, Beijing, China |
| BookMark | eNp9kE1P4zAQhi3EShSW-0pcLHFO8Ufs2NyqCpZIIKpdkPYWTe1JMUrt4qQH-PUbWsSBA6fRjN5nZvQck8OYIhLyi7Mp58xePMwWU8GEmEpeWq3VAZlwpUwhhOCHZMIYN4UV-t8ROe7757EtTVlOyNssD6ENLkBH6zhg14UVRof0KsKyQ0__gA-JLnLawAqGkCJtU6bztF5vY3C7SV8sIA-0ri_pX4cR8gjUHuNu8Z6B6On8CWLEjt4lj12Iq5_kRwtdj6cf9YQ8Xl89zG-K2_vf9Xx2Wzgp5VBozzU6rgwDYIpZC7YqvVComF5ao6RwpfZaG16CFsZgtURr0TDP0Epo5Qk53-_d5PSyxX5ontM2x_FkI3SlK8MrrcaU3qdcTn2fsW1cGHbPDxlC13DWvHtuRs_Nu-fmw_MIsi_gJoc15NfvkLM9EhDxM24rLqtSyv-5bYrS |
| CODEN | IETPAK |
| CitedBy_id | crossref_primary_10_1109_JSEN_2023_3281729 crossref_primary_10_1016_j_comcom_2024_07_006 crossref_primary_10_1109_ACCESS_2022_3218622 crossref_primary_10_1109_LAWP_2023_3321037 crossref_primary_10_1109_TWC_2025_3558950 crossref_primary_10_1109_TWC_2024_3383594 crossref_primary_10_1109_MWC_015_2300603 crossref_primary_10_1109_LAWP_2023_3341882 crossref_primary_10_1016_j_phycom_2022_101871 crossref_primary_10_1109_MCOM_001_2400355 crossref_primary_10_1109_JIOT_2022_3198690 crossref_primary_10_1109_TITS_2024_3413855 crossref_primary_10_1109_TAP_2022_3215818 crossref_primary_10_1109_TVT_2023_3321645 crossref_primary_10_1016_j_eswa_2024_125985 crossref_primary_10_1109_TAP_2023_3345423 crossref_primary_10_1109_TAP_2024_3513540 crossref_primary_10_1109_TAP_2024_3439826 crossref_primary_10_1016_j_phycom_2023_102118 crossref_primary_10_3390_s24030860 crossref_primary_10_3390_electronics12122746 crossref_primary_10_3390_photonics10111210 crossref_primary_10_1109_JIOT_2023_3342984 crossref_primary_10_1109_TCOMM_2024_3376602 crossref_primary_10_1109_TAP_2022_3149663 crossref_primary_10_1109_JPROC_2024_3437730 crossref_primary_10_1109_ACCESS_2024_3443081 crossref_primary_10_1109_TVT_2024_3382650 crossref_primary_10_1109_TWC_2022_3176208 crossref_primary_10_3389_frai_2025_1597981 crossref_primary_10_1109_JSAC_2023_3273769 crossref_primary_10_3390_fi17020060 crossref_primary_10_1109_TVT_2022_3175223 crossref_primary_10_3390_rs14236052 crossref_primary_10_1109_JIOT_2022_3204359 crossref_primary_10_3390_s23229207 crossref_primary_10_1109_TAP_2023_3266840 crossref_primary_10_1109_ACCESS_2023_3324399 crossref_primary_10_1109_ACCESS_2024_3492706 crossref_primary_10_1109_TVT_2024_3510699 crossref_primary_10_1109_TCOMM_2023_3255900 crossref_primary_10_1109_JSTSP_2022_3222597 crossref_primary_10_1109_LWC_2024_3368652 crossref_primary_10_3390_sym14051038 crossref_primary_10_1109_TCOMM_2023_3236381 crossref_primary_10_3390_s22114289 crossref_primary_10_1109_TAP_2023_3278831 crossref_primary_10_1109_JIOT_2024_3426937 crossref_primary_10_1109_LAWP_2025_3562699 crossref_primary_10_1109_MWC_001_2300014 crossref_primary_10_1109_LWC_2023_3240846 crossref_primary_10_1109_MCOM_001_2400699 crossref_primary_10_1109_TVT_2024_3367386 crossref_primary_10_1109_MWC_010_2400253 crossref_primary_10_1109_TWC_2023_3243212 crossref_primary_10_1186_s13638_023_02257_0 crossref_primary_10_1109_LCOMM_2023_3265272 crossref_primary_10_1109_ACCESS_2024_3398992 crossref_primary_10_1109_TVT_2023_3325627 crossref_primary_10_1109_TSP_2024_3450270 crossref_primary_10_3390_s24144496 crossref_primary_10_1109_TVT_2025_3529866 crossref_primary_10_1109_TWC_2024_3429196 crossref_primary_10_1109_TWC_2024_3503369 crossref_primary_10_1109_MWC_012_2400336 crossref_primary_10_3390_telecom6020035 crossref_primary_10_1109_MCOM_019_2300072 crossref_primary_10_1109_MCOM_001_2200386 crossref_primary_10_1016_j_engappai_2025_112080 crossref_primary_10_1109_ACCESS_2025_3527500 crossref_primary_10_1109_COMST_2023_3249835 crossref_primary_10_1109_LWC_2023_3270361 crossref_primary_10_1109_TVT_2024_3460397 crossref_primary_10_3390_telecom3030021 crossref_primary_10_1109_JIOT_2025_3561058 crossref_primary_10_1109_JIOT_2023_3315296 |
| Cites_doi | 10.1109/ICC.2017.7997068 10.1109/TWC.2019.2945531 10.1109/8.982448 10.1109/TAP.1984.1143419 10.1109/PIMRC.2017.8292782 10.1109/TNNLS.2014.2306420 10.1109/TBDATA.2018.2884489 10.1109/8.14401 10.1109/ISAI.2016.0074 10.1109/ICUWB.2015.7324427 10.1109/TITS.2020.3001132 10.1109/ICCCS49078.2020.9118409 10.1109/PIMRC.2007.4394450 10.1109/VETECS.2012.6240318 10.1109/TAP.2004.836422 10.1049/iet-map.2018.6187 10.1109/WPMC.2017.8301878 10.1109/TPAMI.2005.167 10.1109/ICC.2014.6883312 10.1155/2018/8489326 10.1109/ACCESS.2020.3048583 10.1109/TAP.2022.3149663 10.1109/APUSNCURSINRSM.2019.8889367 10.1109/JSAC.2020.3000827 10.1109/TWC.2006.256966 10.1109/TAP.2021.3069491 10.1109/GLOCOM.2017.8254052 10.1038/s42256-021-00302-5 10.1109/ICCC47050.2019.9064069 10.1109/EUCAP.2006.4584880 10.1109/VTC2020-Spring48590.2020.9128426 10.1016/0893-6080(89)90020-8 10.1109/JSAC.2002.801217 10.1109/TAP.2017.2765739 10.1109/TCCN.2017.2741468 10.1109/VTCSpring.2019.8746352 10.1109/SPAWC.2019.8815557 10.1109/TAES.2013.6557997 10.1109/OJCOMS.2020.2982513 10.1109/TAP.2014.2308518 10.1109/TWC.2021.3054977 10.1109/WPNC.2014.6843303 10.1109/COMST.2018.2856587 10.1109/PIMRC.1995.476416 10.1109/TCOMM.2019.2935714 10.1109/MCOMSTD.2019.1800049 10.1109/TAP.2019.2963570 10.1109/MCOM.2019.1800635 10.1109/APS.2013.6711463 10.1109/TAP.2016.2583477 10.1109/TAP.2015.2498951 10.1109/ICC.2019.8761308 10.1109/ICNC.2007.125 10.1109/TWC.2020.2967726 10.1109/MWC.001.2000378 10.1109/VTC.2002.1002821 10.1109/TAP.2019.2949135 10.1109/TSP.2003.820144 10.1109/TVT.2018.2878352 10.1109/ACCESS.2019.2929091 10.1109/MVT.2020.3018436 10.1109/TWC.2014.2372341 10.1007/s10776-008-0084-7 10.1109/TAP.2016.2617379 10.1023/A:1018628609742 10.1109/TCOMM.2020.3003670 10.1109/LWC.2020.2994945 10.1109/ICCW.2019.8756726 10.1109/ICNC.2008.439 10.1109/JSAC.2015.2430191 10.1109/TWC.2017.2744628 10.1109/TAP.2014.2310220 10.1109/MWC.2012.6393523 10.1109/JSAC.2010.100907 10.1109/VETEC.1998.686556 10.1109/JSAC.2019.2934004 10.1109/IPIN.2017.8115877 10.1109/VTCFall.2018.8690550 10.1109/TWC.2020.2969627 10.1109/TCOMM.2020.3019077 10.1007/978-3-642-25734-6_4 10.1109/TAP.2013.2297164 10.4236/jemaa.2014.611036 10.1109/UWBST.2003.1267850 10.1109/TVT.2020.3037212 10.23919/JCC.2019.06.007 10.1007/s11277-017-5096-0 10.1109/IJCNN.2008.4634272 10.1049/iet-map:20060273 10.1109/ICU.2006.281616 10.1109/ICM.2013.6734961 10.1109/ICWCUCA.2012.6402503 10.1109/MCOM.2016.7498102 10.1109/TAP.2020.3012792 10.1109/LAWP.2018.2869548 10.1109/ICCChina.2018.8641214 10.1109/TCOMM.2012.042712.110035 10.1109/INFOCOM.2015.7218588 10.1109/TAP.2015.2428280 10.1109/CVPR.2017.19 10.1109/TAP.2019.2934909 10.1109/LMWC.2019.2952975 10.1109/TVT.2013.2249121 10.1109/TVT.2015.2473687 10.1109/WPNC.2007.353628 10.1109/LAWP.2019.2932904 10.1109/APUSNCURSINRSM.2019.8888567 10.1109/ACCESS.2018.2868480 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TAP.2022.3149665 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2221 |
| EndPage | 3969 |
| ExternalDocumentID | 10_1109_TAP_2022_3149665 9713743 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: State Key Laboratory of Rail Traffic Control and Safety grantid: RCS2022ZZ004 funderid: 10.13039/501100005023 – fundername: China Postdoctoral Science Foundation grantid: 2021M702499 funderid: 10.13039/501100002858 – fundername: National Key Research and Development Program of China grantid: 2020YFB1806903 funderid: 10.13039/501100012166 – fundername: Fundamental Research Funds for the Central Universities grantid: 2020JBZD005 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 61922012; 62001519 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c333t-6d16ec1580aa05099a974d25e506b98532c46d66814a6288e7be99e80d0e93af3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 119 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000811642200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-926X |
| IngestDate | Mon Jun 30 10:13:11 EDT 2025 Tue Nov 18 19:50:35 EST 2025 Sat Nov 29 05:23:17 EST 2025 Wed Aug 27 02:48:19 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-6d16ec1580aa05099a974d25e506b98532c46d66814a6288e7be99e80d0e93af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4778-6405 0000-0002-3949-2693 0000-0001-8889-7374 0000-0002-0902-4565 0000-0003-4135-3227 0000-0001-6850-0595 0000-0002-3093-4571 0000-0002-9203-2629 0000-0002-4779-4763 0000-0002-9729-9592 |
| OpenAccessLink | http://hdl.handle.net/2078.1/262497 |
| PQID | 2676781765 |
| PQPubID | 85476 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TAP_2022_3149665 proquest_journals_2676781765 ieee_primary_9713743 crossref_citationtrail_10_1109_TAP_2022_3149665 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on antennas and propagation |
| PublicationTitleAbbrev | TAP |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref58 ref53 ref52 ref54 goodfellow (ref73) 2016; 1 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 arnold (ref121) 2019 ref44 ref43 ling (ref27) 2012 ref49 ref8 ref7 güvenç (ref30) 2008; 2008 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref39 ref38 ding (ref55) 2013 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 burghal (ref125) 2020 ref29 yang (ref126) 2020; 18 ma (ref85) 2008 gschwendtner (ref71) 1993 ref13 damosso (ref60) 2000; 18957 ref12 ref15 tong (ref111) 2017 ref14 ref97 ref96 ref11 ref99 ref124 ref10 ref98 liu (ref105) 2006; 5 ref17 ref19 ref18 ding (ref119) 2013 ref93 bertoni (ref59) 2000 ref95 ref94 ref90 ref89 ye (ref127) 2019; 17 ref86 ref88 ref87 zhou (ref91) 2005; 2 (ref65) 2017 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref77 ref102 ref76 ref103 ref2 ref1 ref70 ref112 ref72 ref110 ref68 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref114 vilovi? (ref92) 2009 seretis (ref16) 2021 ref122 ref123 ref62 ref120 ref61 |
| References_xml | – volume: 5 start-page: 2173 year: 2006 ident: ref105 article-title: Recurrent neural network based narrowband channel prediction publication-title: Proc IEEE VTC – ident: ref45 doi: 10.1109/ICC.2017.7997068 – ident: ref69 doi: 10.1109/TWC.2019.2945531 – ident: ref15 doi: 10.1109/8.982448 – ident: ref57 doi: 10.1109/TAP.1984.1143419 – ident: ref18 doi: 10.1109/PIMRC.2017.8292782 – ident: ref118 doi: 10.1109/TNNLS.2014.2306420 – year: 2017 ident: ref65 publication-title: Study on channel model for frequency spectrum from 0 5 to 100 GHz – ident: ref95 doi: 10.1109/TBDATA.2018.2884489 – ident: ref58 doi: 10.1109/8.14401 – ident: ref39 doi: 10.1109/ISAI.2016.0074 – ident: ref77 doi: 10.1109/ICUWB.2015.7324427 – ident: ref56 doi: 10.1109/TITS.2020.3001132 – ident: ref78 doi: 10.1109/ICCCS49078.2020.9118409 – ident: ref25 doi: 10.1109/PIMRC.2007.4394450 – volume: 18957 year: 2000 ident: ref60 publication-title: COST Action 231 Digital mobile radio towards future generation systems – ident: ref74 doi: 10.1109/VETECS.2012.6240318 – ident: ref14 doi: 10.1109/TAP.2004.836422 – ident: ref80 doi: 10.1049/iet-map.2018.6187 – ident: ref22 doi: 10.1109/WPMC.2017.8301878 – ident: ref41 doi: 10.1109/TPAMI.2005.167 – year: 2020 ident: ref125 article-title: A comprehensive survey of machine learning based localization with wireless signals publication-title: arXiv 2012 11171 – ident: ref47 doi: 10.1109/ICC.2014.6883312 – ident: ref102 doi: 10.1155/2018/8489326 – ident: ref101 doi: 10.1109/ACCESS.2020.3048583 – start-page: 229 year: 2008 ident: ref85 article-title: Artificial neural network modeling approach to power-line communication multi-path channel publication-title: Proc Int Conf Neural Netw Signal Process – ident: ref7 doi: 10.1109/TAP.2022.3149663 – ident: ref51 doi: 10.1109/APUSNCURSINRSM.2019.8889367 – ident: ref100 doi: 10.1109/JSAC.2020.3000827 – ident: ref68 doi: 10.1109/TWC.2006.256966 – ident: ref3 doi: 10.1109/TAP.2021.3069491 – ident: ref44 doi: 10.1109/GLOCOM.2017.8254052 – ident: ref124 doi: 10.1038/s42256-021-00302-5 – ident: ref81 doi: 10.1109/ICCC47050.2019.9064069 – ident: ref90 doi: 10.1109/EUCAP.2006.4584880 – year: 2019 ident: ref121 article-title: Enabling FDD massive MIMO through deep learning-based channel prediction publication-title: arXiv 1901 03664 – ident: ref113 doi: 10.1109/VTC2020-Spring48590.2020.9128426 – ident: ref70 doi: 10.1016/0893-6080(89)90020-8 – ident: ref89 doi: 10.1109/JSAC.2002.801217 – volume: 18 start-page: 2 year: 2020 ident: ref126 article-title: Enabling intelligence at network edge network edge: An overview of federated learning publication-title: ZTE Commun – ident: ref9 doi: 10.1109/TAP.2017.2765739 – ident: ref79 doi: 10.1109/TCCN.2017.2741468 – ident: ref107 doi: 10.1109/VTCSpring.2019.8746352 – year: 2000 ident: ref59 publication-title: Radio Propagation for Modern Wireless Systems – ident: ref114 doi: 10.1109/SPAWC.2019.8815557 – ident: ref23 doi: 10.1109/TAES.2013.6557997 – ident: ref112 doi: 10.1109/OJCOMS.2020.2982513 – start-page: 804 year: 1993 ident: ref71 article-title: An application of neural networks to the prediction of terrestrial wave propagation publication-title: Proc 8th Int Conf Antennas Propag – volume: 17 start-page: 10 year: 2019 ident: ref127 article-title: Novel real-time system for traffic flow classification and prediction publication-title: ZTE Commun – ident: ref93 doi: 10.1109/TAP.2014.2308518 – ident: ref123 doi: 10.1109/TWC.2021.3054977 – ident: ref31 doi: 10.1109/WPNC.2014.6843303 – ident: ref6 doi: 10.1109/COMST.2018.2856587 – ident: ref72 doi: 10.1109/PIMRC.1995.476416 – ident: ref103 doi: 10.1109/TCOMM.2019.2935714 – ident: ref54 doi: 10.1109/MCOMSTD.2019.1800049 – ident: ref5 doi: 10.1109/TAP.2019.2963570 – ident: ref88 doi: 10.1109/MCOM.2019.1800635 – ident: ref76 doi: 10.1109/APS.2013.6711463 – ident: ref10 doi: 10.1109/TAP.2016.2583477 – ident: ref122 doi: 10.1109/TAP.2015.2498951 – ident: ref104 doi: 10.1109/ICC.2019.8761308 – ident: ref82 doi: 10.1109/ICNC.2007.125 – ident: ref40 doi: 10.1109/TWC.2020.2967726 – ident: ref2 doi: 10.1109/MWC.001.2000378 – ident: ref61 doi: 10.1109/VTC.2002.1002821 – ident: ref13 doi: 10.1109/TAP.2019.2949135 – volume: 2 start-page: 1189 year: 2005 ident: ref91 article-title: Application of artificial neural networks to the prediction of field strength in indoor environment for wireless LAN publication-title: Proc WiCOM – ident: ref64 doi: 10.1109/TSP.2003.820144 – ident: ref33 doi: 10.1109/TVT.2018.2878352 – ident: ref120 doi: 10.1109/ACCESS.2019.2929091 – ident: ref1 doi: 10.1109/MVT.2020.3018436 – ident: ref38 doi: 10.1109/TWC.2014.2372341 – ident: ref24 doi: 10.1007/s10776-008-0084-7 – ident: ref94 doi: 10.1109/TAP.2016.2617379 – ident: ref50 doi: 10.1023/A:1018628609742 – ident: ref117 doi: 10.1109/TCOMM.2020.3003670 – ident: ref46 doi: 10.1109/LWC.2020.2994945 – ident: ref52 doi: 10.1109/ICCW.2019.8756726 – ident: ref83 doi: 10.1109/ICNC.2008.439 – ident: ref42 doi: 10.1109/JSAC.2015.2430191 – ident: ref49 doi: 10.1109/TWC.2017.2744628 – ident: ref67 doi: 10.1109/TAP.2014.2310220 – ident: ref66 doi: 10.1109/MWC.2012.6393523 – ident: ref35 doi: 10.1109/JSAC.2010.100907 – start-page: 306 year: 2013 ident: ref55 article-title: Study on the propagation scenario classification of the high-speed railway GSM-R system based on GIS publication-title: Proc ICWMMN – ident: ref19 doi: 10.1109/VETEC.1998.686556 – volume: 1 year: 2016 ident: ref73 publication-title: Deep Learning – ident: ref116 doi: 10.1109/JSAC.2019.2934004 – ident: ref29 doi: 10.1109/IPIN.2017.8115877 – ident: ref108 doi: 10.1109/VTCFall.2018.8690550 – ident: ref115 doi: 10.1109/TWC.2020.2969627 – ident: ref99 doi: 10.1109/TCOMM.2020.3019077 – ident: ref106 doi: 10.1007/978-3-642-25734-6_4 – start-page: 1306 year: 2012 ident: ref27 article-title: Line-of-sight identification based on area measurements publication-title: Proc ACAI – ident: ref11 doi: 10.1109/TAP.2013.2297164 – ident: ref96 doi: 10.4236/jemaa.2014.611036 – ident: ref62 doi: 10.1109/UWBST.2003.1267850 – ident: ref98 doi: 10.1109/TVT.2020.3037212 – start-page: 275 year: 2009 ident: ref92 article-title: Using particle swarm optimization in training neural network for indoor field strength prediction publication-title: Proc ELMAR Int Symp – ident: ref86 doi: 10.23919/JCC.2019.06.007 – ident: ref34 doi: 10.1007/s11277-017-5096-0 – volume: 2008 start-page: 1 year: 2008 ident: ref30 article-title: NLOS identification and weighted least-squares localization for UWB systems using multipath channel statistics publication-title: EURASIP J Adv Signal Process – ident: ref110 doi: 10.1109/IJCNN.2008.4634272 – ident: ref21 doi: 10.1049/iet-map:20060273 – ident: ref20 doi: 10.1109/ICU.2006.281616 – ident: ref37 doi: 10.1109/ICM.2013.6734961 – start-page: 19 year: 2017 ident: ref111 article-title: Long short-term memory network for wireless channel prediction publication-title: Proc Int Conf Signal Inf Process Netw Comput – ident: ref75 doi: 10.1109/ICWCUCA.2012.6402503 – ident: ref63 doi: 10.1109/MCOM.2016.7498102 – ident: ref4 doi: 10.1109/TAP.2020.3012792 – ident: ref43 doi: 10.1109/LAWP.2018.2869548 – ident: ref84 doi: 10.1109/ICCChina.2018.8641214 – ident: ref36 doi: 10.1109/TCOMM.2012.042712.110035 – ident: ref32 doi: 10.1109/INFOCOM.2015.7218588 – ident: ref12 doi: 10.1109/TAP.2015.2428280 – ident: ref87 doi: 10.1109/CVPR.2017.19 – start-page: 640 year: 2013 ident: ref119 article-title: Fading channel prediction based on complex-valued neural networks in frequency domain publication-title: Proc Int Symp Electromagn Theory – ident: ref8 doi: 10.1109/TAP.2019.2934909 – ident: ref48 doi: 10.1109/LMWC.2019.2952975 – ident: ref28 doi: 10.1109/TVT.2013.2249121 – ident: ref17 doi: 10.1109/TVT.2015.2473687 – ident: ref26 doi: 10.1109/WPNC.2007.353628 – ident: ref97 doi: 10.1109/LAWP.2019.2932904 – year: 2021 ident: ref16 article-title: An overview of machine learning techniques for radiowave propagation modeling publication-title: IEEE Trans Antennas Propag – ident: ref53 doi: 10.1109/APUSNCURSINRSM.2019.8888567 – ident: ref109 doi: 10.1109/ACCESS.2018.2868480 |
| SSID | ssj0014844 |
| Score | 2.6865032 |
| Snippet | This two-part paper investigates the application of artificial intelligence (AI) and, in particular, machine learning (ML) to the study of wireless propagation... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3955 |
| SubjectTerms | Artificial intelligence Artificial intelligence (AI) channel modeling channel prediction Data processing Decision trees Laboratories Literature reviews Machine learning machine learning (ML) Modelling Optimization Propagation Radio transmission Random forests scenario identification State-of-the-art reviews Support vector machines Testing Training Wireless communication |
| Title | Artificial Intelligence Enabled Radio Propagation for Communications-Part II: Scenario Identification and Channel Modeling |
| URI | https://ieeexplore.ieee.org/document/9713743 https://www.proquest.com/docview/2676781765 |
| Volume | 70 |
| WOSCitedRecordID | wos000811642200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-2221 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014844 issn: 0018-926X databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS-wwFL2ouHgu_Hgqb_wiCzcP7Ju0TdLEnYjibGTwA2ZX0uRWBOk8ZkYX_npv0s6gKIK7QpNScnJ7c5qccwGOJa8zlylMfKV5IqSjmKutp3D3OcW5rIXXsdhEcX2tRyMzXIKThRYGEePhM_wXLuNevh-75_CrrG-IUVHGW4bloihardZix0Bo0ToupxTAmRrNtyS56d-dDYkIZhnxU0Gre_khBcWaKp8-xDG7XG787L02Yb1bRbKzFvYtWMLmN6y98xbchtdws7WHYIN3vpvsIqqlPLux_nHMhhNizQ8RHkbrV_ZBMDJNhjSz2GBwym4dNkSrx6xV9tZdC2Ybz4JCocEnFuqqBXX7DtxfXtydXyVdoYXE5Xk-S5RPFbpUam5t8IMxlliGzyRKripDCT1zQnmldCpsKE-MRYXGoOaeo8ltne_CSjNu8A8wT_jmtZUV5kqkaU3jXRkvuMDKo6l0D_rzsS9d50IeimE8lZGNcFMSWmVAq-zQ6sHfRY__rQPHN223AzqLdh0wPTiYw1t2ITots2BVp9NCyb2ve-3Dr_Ds9lzYAazMJs94CKvuZfY4nRzF2fcGhQrY0A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH503WDbYb-6sWxtp8Mug3qRZUmRdiulpaFdCFsGuRlZei6B4owk3aF_fZ9kJ7SsFHozWMJGn56fPkvf9wC-Kl4LLzRmoTI8k8pTzNUuULiHguJc1TKYVGxiMBqZ6dSOt-Bgo4VBxHT4DL_Hy7SXH-b-Kv4q61tiVJTxnsBTJaXIW7XWZs9AGtl6LucUwkJP15uS3PYnh2OigkIQQ5W0vld3klCqqvLfpzjll5PXj3uzN_CqW0eywxb4t7CFzTt4ectdcAeu483WIIINbzlvsuOklwrslwuzORsviDdfJIAYrWDZHcnIMhvT3GLD4Q_222NDxHrOWm1v3bVgrgksahQavGSxslrUt7-HPyfHk6PTrCu1kPmiKFaZDrlGnyvDnYuOMNYRzwhCoeK6spTShZc6aG1y6WKBYhxUaC0aHjjawtXFB9hu5g1-BBYI4aJ2qsJCyzyvabwrGySXWAW0lelBfz32pe98yGM5jMsy8RFuS0KrjGiVHVo9-Lbp8bf14Hig7U5EZ9OuA6YHu2t4yy5Il6WIZnUmH2j16f5eX-D56eTneXk-HJ19hhfxOe0psV3YXi2ucA-e-X-r2XKxn2biDfKN3Bc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Enabled+Radio+Propagation+for+Communications%E2%80%94Part+II%3A+Scenario+Identification+and+Channel+Modeling&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Huang%2C+Chen&rft.au=He%2C+Ruisi&rft.au=Ai%2C+Bo&rft.au=Molisch%2C+Andreas+F&rft.date=2022-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=70&rft.issue=6&rft.spage=3955&rft_id=info:doi/10.1109%2FTAP.2022.3149665&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon |