Artificial Intelligence Enabled Radio Propagation for Communications-Part II: Scenario Identification and Channel Modeling

This two-part paper investigates the application of artificial intelligence (AI) and, in particular, machine learning (ML) to the study of wireless propagation channels. In Part I of this article, we introduced AI and ML and provided a comprehensive survey on ML-enabled channel characterization and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation Vol. 70; no. 6; pp. 3955 - 3969
Main Authors: Huang, Chen, He, Ruisi, Ai, Bo, Molisch, Andreas F., Lau, Buon Kiong, Haneda, Katsuyuki, Liu, Bo, Wang, Cheng-Xiang, Yang, Mi, Oestges, Claude, Zhong, Zhangdui
Format: Journal Article
Language:English
Published: New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-926X, 1558-2221
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This two-part paper investigates the application of artificial intelligence (AI) and, in particular, machine learning (ML) to the study of wireless propagation channels. In Part I of this article, we introduced AI and ML and provided a comprehensive survey on ML-enabled channel characterization and antenna-channel optimization, and in this part (Part II), we review the state-of-the-art literature on scenario identification and channel modeling here. In particular, the key ideas of ML for scenario identification and channel modeling/prediction are presented, and the widely used ML methods for propagation scenario identification and channel modeling and prediction are analyzed and compared. Based on the state of the art, the future challenges of AI-/ML-based channel data processing techniques are given as well.
AbstractList This two-part paper investigates the application of artificial intelligence (AI) and, in particular, machine learning (ML) to the study of wireless propagation channels. In Part I of this article, we introduced AI and ML and provided a comprehensive survey on ML-enabled channel characterization and antenna-channel optimization, and in this part (Part II), we review the state-of-the-art literature on scenario identification and channel modeling here. In particular, the key ideas of ML for scenario identification and channel modeling/prediction are presented, and the widely used ML methods for propagation scenario identification and channel modeling and prediction are analyzed and compared. Based on the state of the art, the future challenges of AI-/ML-based channel data processing techniques are given as well.
Author Lau, Buon Kiong
Molisch, Andreas F.
Liu, Bo
Huang, Chen
Zhong, Zhangdui
He, Ruisi
Wang, Cheng-Xiang
Yang, Mi
Oestges, Claude
Ai, Bo
Haneda, Katsuyuki
Author_xml – sequence: 1
  givenname: Chen
  orcidid: 0000-0002-3949-2693
  surname: Huang
  fullname: Huang, Chen
  email: huangchen@pmlabs.com.cn
  organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Ruisi
  orcidid: 0000-0003-4135-3227
  surname: He
  fullname: He, Ruisi
  email: ruisi.he@bjtu.edu.cn
  organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Broadband Mobile Information Communications, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Bo
  orcidid: 0000-0001-6850-0595
  surname: Ai
  fullname: Ai, Bo
  email: aibo@ieee.org
  organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Andreas F.
  orcidid: 0000-0002-4779-4763
  surname: Molisch
  fullname: Molisch, Andreas F.
  email: molisch@usc.edu
  organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
– sequence: 5
  givenname: Buon Kiong
  orcidid: 0000-0002-9203-2629
  surname: Lau
  fullname: Lau, Buon Kiong
  email: bklau@ieee.org
  organization: Department of Electrical and Information Technology, Lund University, Lund, Sweden
– sequence: 6
  givenname: Katsuyuki
  orcidid: 0000-0002-4778-6405
  surname: Haneda
  fullname: Haneda, Katsuyuki
  email: katsuyuki.haneda@aalto.fi
  organization: Department of Radio Science and Engineering, Aalto University, Espoo, Finland
– sequence: 7
  givenname: Bo
  orcidid: 0000-0002-3093-4571
  surname: Liu
  fullname: Liu, Bo
  email: Bo.Liu@glasgow.ac.uk
  organization: School of Engineering, University of Glasgow, Glasgow, U.K
– sequence: 8
  givenname: Cheng-Xiang
  orcidid: 0000-0002-9729-9592
  surname: Wang
  fullname: Wang, Cheng-Xiang
  email: chxwang@seu.edu.cn
  organization: Purple Mountain Laboratories, Nanjing, China
– sequence: 9
  givenname: Mi
  surname: Yang
  fullname: Yang, Mi
  email: myang@bjtu.edu.cn
  organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Broadband Mobile Information Communications, Beijing Jiaotong University, Beijing, China
– sequence: 10
  givenname: Claude
  orcidid: 0000-0002-0902-4565
  surname: Oestges
  fullname: Oestges, Claude
  email: claude.oestges@uclouvain.be
  organization: Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universite Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
– sequence: 11
  givenname: Zhangdui
  orcidid: 0000-0001-8889-7374
  surname: Zhong
  fullname: Zhong, Zhangdui
  email: zhdzhong@bjtu.edu.cn
  organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Broadband Mobile Information Communications, Beijing Jiaotong University, Beijing, China
BookMark eNp9kE1P4zAQhi3EShSW-0pcLHFO8Ufs2NyqCpZIIKpdkPYWTe1JMUrt4qQH-PUbWsSBA6fRjN5nZvQck8OYIhLyi7Mp58xePMwWU8GEmEpeWq3VAZlwpUwhhOCHZMIYN4UV-t8ROe7757EtTVlOyNssD6ENLkBH6zhg14UVRof0KsKyQ0__gA-JLnLawAqGkCJtU6bztF5vY3C7SV8sIA-0ri_pX4cR8gjUHuNu8Z6B6On8CWLEjt4lj12Iq5_kRwtdj6cf9YQ8Xl89zG-K2_vf9Xx2Wzgp5VBozzU6rgwDYIpZC7YqvVComF5ao6RwpfZaG16CFsZgtURr0TDP0Epo5Qk53-_d5PSyxX5ontM2x_FkI3SlK8MrrcaU3qdcTn2fsW1cGHbPDxlC13DWvHtuRs_Nu-fmw_MIsi_gJoc15NfvkLM9EhDxM24rLqtSyv-5bYrS
CODEN IETPAK
CitedBy_id crossref_primary_10_1109_JSEN_2023_3281729
crossref_primary_10_1016_j_comcom_2024_07_006
crossref_primary_10_1109_ACCESS_2022_3218622
crossref_primary_10_1109_LAWP_2023_3321037
crossref_primary_10_1109_TWC_2025_3558950
crossref_primary_10_1109_TWC_2024_3383594
crossref_primary_10_1109_MWC_015_2300603
crossref_primary_10_1109_LAWP_2023_3341882
crossref_primary_10_1016_j_phycom_2022_101871
crossref_primary_10_1109_MCOM_001_2400355
crossref_primary_10_1109_JIOT_2022_3198690
crossref_primary_10_1109_TITS_2024_3413855
crossref_primary_10_1109_TAP_2022_3215818
crossref_primary_10_1109_TVT_2023_3321645
crossref_primary_10_1016_j_eswa_2024_125985
crossref_primary_10_1109_TAP_2023_3345423
crossref_primary_10_1109_TAP_2024_3513540
crossref_primary_10_1109_TAP_2024_3439826
crossref_primary_10_1016_j_phycom_2023_102118
crossref_primary_10_3390_s24030860
crossref_primary_10_3390_electronics12122746
crossref_primary_10_3390_photonics10111210
crossref_primary_10_1109_JIOT_2023_3342984
crossref_primary_10_1109_TCOMM_2024_3376602
crossref_primary_10_1109_TAP_2022_3149663
crossref_primary_10_1109_JPROC_2024_3437730
crossref_primary_10_1109_ACCESS_2024_3443081
crossref_primary_10_1109_TVT_2024_3382650
crossref_primary_10_1109_TWC_2022_3176208
crossref_primary_10_3389_frai_2025_1597981
crossref_primary_10_1109_JSAC_2023_3273769
crossref_primary_10_3390_fi17020060
crossref_primary_10_1109_TVT_2022_3175223
crossref_primary_10_3390_rs14236052
crossref_primary_10_1109_JIOT_2022_3204359
crossref_primary_10_3390_s23229207
crossref_primary_10_1109_TAP_2023_3266840
crossref_primary_10_1109_ACCESS_2023_3324399
crossref_primary_10_1109_ACCESS_2024_3492706
crossref_primary_10_1109_TVT_2024_3510699
crossref_primary_10_1109_TCOMM_2023_3255900
crossref_primary_10_1109_JSTSP_2022_3222597
crossref_primary_10_1109_LWC_2024_3368652
crossref_primary_10_3390_sym14051038
crossref_primary_10_1109_TCOMM_2023_3236381
crossref_primary_10_3390_s22114289
crossref_primary_10_1109_TAP_2023_3278831
crossref_primary_10_1109_JIOT_2024_3426937
crossref_primary_10_1109_LAWP_2025_3562699
crossref_primary_10_1109_MWC_001_2300014
crossref_primary_10_1109_LWC_2023_3240846
crossref_primary_10_1109_MCOM_001_2400699
crossref_primary_10_1109_TVT_2024_3367386
crossref_primary_10_1109_MWC_010_2400253
crossref_primary_10_1109_TWC_2023_3243212
crossref_primary_10_1186_s13638_023_02257_0
crossref_primary_10_1109_LCOMM_2023_3265272
crossref_primary_10_1109_ACCESS_2024_3398992
crossref_primary_10_1109_TVT_2023_3325627
crossref_primary_10_1109_TSP_2024_3450270
crossref_primary_10_3390_s24144496
crossref_primary_10_1109_TVT_2025_3529866
crossref_primary_10_1109_TWC_2024_3429196
crossref_primary_10_1109_TWC_2024_3503369
crossref_primary_10_1109_MWC_012_2400336
crossref_primary_10_3390_telecom6020035
crossref_primary_10_1109_MCOM_019_2300072
crossref_primary_10_1109_MCOM_001_2200386
crossref_primary_10_1016_j_engappai_2025_112080
crossref_primary_10_1109_ACCESS_2025_3527500
crossref_primary_10_1109_COMST_2023_3249835
crossref_primary_10_1109_LWC_2023_3270361
crossref_primary_10_1109_TVT_2024_3460397
crossref_primary_10_3390_telecom3030021
crossref_primary_10_1109_JIOT_2025_3561058
crossref_primary_10_1109_JIOT_2023_3315296
Cites_doi 10.1109/ICC.2017.7997068
10.1109/TWC.2019.2945531
10.1109/8.982448
10.1109/TAP.1984.1143419
10.1109/PIMRC.2017.8292782
10.1109/TNNLS.2014.2306420
10.1109/TBDATA.2018.2884489
10.1109/8.14401
10.1109/ISAI.2016.0074
10.1109/ICUWB.2015.7324427
10.1109/TITS.2020.3001132
10.1109/ICCCS49078.2020.9118409
10.1109/PIMRC.2007.4394450
10.1109/VETECS.2012.6240318
10.1109/TAP.2004.836422
10.1049/iet-map.2018.6187
10.1109/WPMC.2017.8301878
10.1109/TPAMI.2005.167
10.1109/ICC.2014.6883312
10.1155/2018/8489326
10.1109/ACCESS.2020.3048583
10.1109/TAP.2022.3149663
10.1109/APUSNCURSINRSM.2019.8889367
10.1109/JSAC.2020.3000827
10.1109/TWC.2006.256966
10.1109/TAP.2021.3069491
10.1109/GLOCOM.2017.8254052
10.1038/s42256-021-00302-5
10.1109/ICCC47050.2019.9064069
10.1109/EUCAP.2006.4584880
10.1109/VTC2020-Spring48590.2020.9128426
10.1016/0893-6080(89)90020-8
10.1109/JSAC.2002.801217
10.1109/TAP.2017.2765739
10.1109/TCCN.2017.2741468
10.1109/VTCSpring.2019.8746352
10.1109/SPAWC.2019.8815557
10.1109/TAES.2013.6557997
10.1109/OJCOMS.2020.2982513
10.1109/TAP.2014.2308518
10.1109/TWC.2021.3054977
10.1109/WPNC.2014.6843303
10.1109/COMST.2018.2856587
10.1109/PIMRC.1995.476416
10.1109/TCOMM.2019.2935714
10.1109/MCOMSTD.2019.1800049
10.1109/TAP.2019.2963570
10.1109/MCOM.2019.1800635
10.1109/APS.2013.6711463
10.1109/TAP.2016.2583477
10.1109/TAP.2015.2498951
10.1109/ICC.2019.8761308
10.1109/ICNC.2007.125
10.1109/TWC.2020.2967726
10.1109/MWC.001.2000378
10.1109/VTC.2002.1002821
10.1109/TAP.2019.2949135
10.1109/TSP.2003.820144
10.1109/TVT.2018.2878352
10.1109/ACCESS.2019.2929091
10.1109/MVT.2020.3018436
10.1109/TWC.2014.2372341
10.1007/s10776-008-0084-7
10.1109/TAP.2016.2617379
10.1023/A:1018628609742
10.1109/TCOMM.2020.3003670
10.1109/LWC.2020.2994945
10.1109/ICCW.2019.8756726
10.1109/ICNC.2008.439
10.1109/JSAC.2015.2430191
10.1109/TWC.2017.2744628
10.1109/TAP.2014.2310220
10.1109/MWC.2012.6393523
10.1109/JSAC.2010.100907
10.1109/VETEC.1998.686556
10.1109/JSAC.2019.2934004
10.1109/IPIN.2017.8115877
10.1109/VTCFall.2018.8690550
10.1109/TWC.2020.2969627
10.1109/TCOMM.2020.3019077
10.1007/978-3-642-25734-6_4
10.1109/TAP.2013.2297164
10.4236/jemaa.2014.611036
10.1109/UWBST.2003.1267850
10.1109/TVT.2020.3037212
10.23919/JCC.2019.06.007
10.1007/s11277-017-5096-0
10.1109/IJCNN.2008.4634272
10.1049/iet-map:20060273
10.1109/ICU.2006.281616
10.1109/ICM.2013.6734961
10.1109/ICWCUCA.2012.6402503
10.1109/MCOM.2016.7498102
10.1109/TAP.2020.3012792
10.1109/LAWP.2018.2869548
10.1109/ICCChina.2018.8641214
10.1109/TCOMM.2012.042712.110035
10.1109/INFOCOM.2015.7218588
10.1109/TAP.2015.2428280
10.1109/CVPR.2017.19
10.1109/TAP.2019.2934909
10.1109/LMWC.2019.2952975
10.1109/TVT.2013.2249121
10.1109/TVT.2015.2473687
10.1109/WPNC.2007.353628
10.1109/LAWP.2019.2932904
10.1109/APUSNCURSINRSM.2019.8888567
10.1109/ACCESS.2018.2868480
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TAP.2022.3149665
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2221
EndPage 3969
ExternalDocumentID 10_1109_TAP_2022_3149665
9713743
Genre orig-research
GrantInformation_xml – fundername: State Key Laboratory of Rail Traffic Control and Safety
  grantid: RCS2022ZZ004
  funderid: 10.13039/501100005023
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M702499
  funderid: 10.13039/501100002858
– fundername: National Key Research and Development Program of China
  grantid: 2020YFB1806903
  funderid: 10.13039/501100012166
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2020JBZD005
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61922012; 62001519
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c333t-6d16ec1580aa05099a974d25e506b98532c46d66814a6288e7be99e80d0e93af3
IEDL.DBID RIE
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000811642200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-926X
IngestDate Mon Jun 30 10:13:11 EDT 2025
Tue Nov 18 19:50:35 EST 2025
Sat Nov 29 05:23:17 EST 2025
Wed Aug 27 02:48:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-6d16ec1580aa05099a974d25e506b98532c46d66814a6288e7be99e80d0e93af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4778-6405
0000-0002-3949-2693
0000-0001-8889-7374
0000-0002-0902-4565
0000-0003-4135-3227
0000-0001-6850-0595
0000-0002-3093-4571
0000-0002-9203-2629
0000-0002-4779-4763
0000-0002-9729-9592
OpenAccessLink http://hdl.handle.net/2078.1/262497
PQID 2676781765
PQPubID 85476
PageCount 15
ParticipantIDs crossref_primary_10_1109_TAP_2022_3149665
proquest_journals_2676781765
ieee_primary_9713743
crossref_citationtrail_10_1109_TAP_2022_3149665
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref58
ref53
ref52
ref54
goodfellow (ref73) 2016; 1
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
arnold (ref121) 2019
ref44
ref43
ling (ref27) 2012
ref49
ref8
ref7
güvenç (ref30) 2008; 2008
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref39
ref38
ding (ref55) 2013
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
burghal (ref125) 2020
ref29
yang (ref126) 2020; 18
ma (ref85) 2008
gschwendtner (ref71) 1993
ref13
damosso (ref60) 2000; 18957
ref12
ref15
tong (ref111) 2017
ref14
ref97
ref96
ref11
ref99
ref124
ref10
ref98
liu (ref105) 2006; 5
ref17
ref19
ref18
ding (ref119) 2013
ref93
bertoni (ref59) 2000
ref95
ref94
ref90
ref89
ye (ref127) 2019; 17
ref86
ref88
ref87
zhou (ref91) 2005; 2
(ref65) 2017
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref77
ref102
ref76
ref103
ref2
ref1
ref70
ref112
ref72
ref110
ref68
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref114
vilovi? (ref92) 2009
seretis (ref16) 2021
ref122
ref123
ref62
ref120
ref61
References_xml – volume: 5
  start-page: 2173
  year: 2006
  ident: ref105
  article-title: Recurrent neural network based narrowband channel prediction
  publication-title: Proc IEEE VTC
– ident: ref45
  doi: 10.1109/ICC.2017.7997068
– ident: ref69
  doi: 10.1109/TWC.2019.2945531
– ident: ref15
  doi: 10.1109/8.982448
– ident: ref57
  doi: 10.1109/TAP.1984.1143419
– ident: ref18
  doi: 10.1109/PIMRC.2017.8292782
– ident: ref118
  doi: 10.1109/TNNLS.2014.2306420
– year: 2017
  ident: ref65
  publication-title: Study on channel model for frequency spectrum from 0 5 to 100 GHz
– ident: ref95
  doi: 10.1109/TBDATA.2018.2884489
– ident: ref58
  doi: 10.1109/8.14401
– ident: ref39
  doi: 10.1109/ISAI.2016.0074
– ident: ref77
  doi: 10.1109/ICUWB.2015.7324427
– ident: ref56
  doi: 10.1109/TITS.2020.3001132
– ident: ref78
  doi: 10.1109/ICCCS49078.2020.9118409
– ident: ref25
  doi: 10.1109/PIMRC.2007.4394450
– volume: 18957
  year: 2000
  ident: ref60
  publication-title: COST Action 231 Digital mobile radio towards future generation systems
– ident: ref74
  doi: 10.1109/VETECS.2012.6240318
– ident: ref14
  doi: 10.1109/TAP.2004.836422
– ident: ref80
  doi: 10.1049/iet-map.2018.6187
– ident: ref22
  doi: 10.1109/WPMC.2017.8301878
– ident: ref41
  doi: 10.1109/TPAMI.2005.167
– year: 2020
  ident: ref125
  article-title: A comprehensive survey of machine learning based localization with wireless signals
  publication-title: arXiv 2012 11171
– ident: ref47
  doi: 10.1109/ICC.2014.6883312
– ident: ref102
  doi: 10.1155/2018/8489326
– ident: ref101
  doi: 10.1109/ACCESS.2020.3048583
– start-page: 229
  year: 2008
  ident: ref85
  article-title: Artificial neural network modeling approach to power-line communication multi-path channel
  publication-title: Proc Int Conf Neural Netw Signal Process
– ident: ref7
  doi: 10.1109/TAP.2022.3149663
– ident: ref51
  doi: 10.1109/APUSNCURSINRSM.2019.8889367
– ident: ref100
  doi: 10.1109/JSAC.2020.3000827
– ident: ref68
  doi: 10.1109/TWC.2006.256966
– ident: ref3
  doi: 10.1109/TAP.2021.3069491
– ident: ref44
  doi: 10.1109/GLOCOM.2017.8254052
– ident: ref124
  doi: 10.1038/s42256-021-00302-5
– ident: ref81
  doi: 10.1109/ICCC47050.2019.9064069
– ident: ref90
  doi: 10.1109/EUCAP.2006.4584880
– year: 2019
  ident: ref121
  article-title: Enabling FDD massive MIMO through deep learning-based channel prediction
  publication-title: arXiv 1901 03664
– ident: ref113
  doi: 10.1109/VTC2020-Spring48590.2020.9128426
– ident: ref70
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref89
  doi: 10.1109/JSAC.2002.801217
– volume: 18
  start-page: 2
  year: 2020
  ident: ref126
  article-title: Enabling intelligence at network edge network edge: An overview of federated learning
  publication-title: ZTE Commun
– ident: ref9
  doi: 10.1109/TAP.2017.2765739
– ident: ref79
  doi: 10.1109/TCCN.2017.2741468
– ident: ref107
  doi: 10.1109/VTCSpring.2019.8746352
– year: 2000
  ident: ref59
  publication-title: Radio Propagation for Modern Wireless Systems
– ident: ref114
  doi: 10.1109/SPAWC.2019.8815557
– ident: ref23
  doi: 10.1109/TAES.2013.6557997
– ident: ref112
  doi: 10.1109/OJCOMS.2020.2982513
– start-page: 804
  year: 1993
  ident: ref71
  article-title: An application of neural networks to the prediction of terrestrial wave propagation
  publication-title: Proc 8th Int Conf Antennas Propag
– volume: 17
  start-page: 10
  year: 2019
  ident: ref127
  article-title: Novel real-time system for traffic flow classification and prediction
  publication-title: ZTE Commun
– ident: ref93
  doi: 10.1109/TAP.2014.2308518
– ident: ref123
  doi: 10.1109/TWC.2021.3054977
– ident: ref31
  doi: 10.1109/WPNC.2014.6843303
– ident: ref6
  doi: 10.1109/COMST.2018.2856587
– ident: ref72
  doi: 10.1109/PIMRC.1995.476416
– ident: ref103
  doi: 10.1109/TCOMM.2019.2935714
– ident: ref54
  doi: 10.1109/MCOMSTD.2019.1800049
– ident: ref5
  doi: 10.1109/TAP.2019.2963570
– ident: ref88
  doi: 10.1109/MCOM.2019.1800635
– ident: ref76
  doi: 10.1109/APS.2013.6711463
– ident: ref10
  doi: 10.1109/TAP.2016.2583477
– ident: ref122
  doi: 10.1109/TAP.2015.2498951
– ident: ref104
  doi: 10.1109/ICC.2019.8761308
– ident: ref82
  doi: 10.1109/ICNC.2007.125
– ident: ref40
  doi: 10.1109/TWC.2020.2967726
– ident: ref2
  doi: 10.1109/MWC.001.2000378
– ident: ref61
  doi: 10.1109/VTC.2002.1002821
– ident: ref13
  doi: 10.1109/TAP.2019.2949135
– volume: 2
  start-page: 1189
  year: 2005
  ident: ref91
  article-title: Application of artificial neural networks to the prediction of field strength in indoor environment for wireless LAN
  publication-title: Proc WiCOM
– ident: ref64
  doi: 10.1109/TSP.2003.820144
– ident: ref33
  doi: 10.1109/TVT.2018.2878352
– ident: ref120
  doi: 10.1109/ACCESS.2019.2929091
– ident: ref1
  doi: 10.1109/MVT.2020.3018436
– ident: ref38
  doi: 10.1109/TWC.2014.2372341
– ident: ref24
  doi: 10.1007/s10776-008-0084-7
– ident: ref94
  doi: 10.1109/TAP.2016.2617379
– ident: ref50
  doi: 10.1023/A:1018628609742
– ident: ref117
  doi: 10.1109/TCOMM.2020.3003670
– ident: ref46
  doi: 10.1109/LWC.2020.2994945
– ident: ref52
  doi: 10.1109/ICCW.2019.8756726
– ident: ref83
  doi: 10.1109/ICNC.2008.439
– ident: ref42
  doi: 10.1109/JSAC.2015.2430191
– ident: ref49
  doi: 10.1109/TWC.2017.2744628
– ident: ref67
  doi: 10.1109/TAP.2014.2310220
– ident: ref66
  doi: 10.1109/MWC.2012.6393523
– ident: ref35
  doi: 10.1109/JSAC.2010.100907
– start-page: 306
  year: 2013
  ident: ref55
  article-title: Study on the propagation scenario classification of the high-speed railway GSM-R system based on GIS
  publication-title: Proc ICWMMN
– ident: ref19
  doi: 10.1109/VETEC.1998.686556
– volume: 1
  year: 2016
  ident: ref73
  publication-title: Deep Learning
– ident: ref116
  doi: 10.1109/JSAC.2019.2934004
– ident: ref29
  doi: 10.1109/IPIN.2017.8115877
– ident: ref108
  doi: 10.1109/VTCFall.2018.8690550
– ident: ref115
  doi: 10.1109/TWC.2020.2969627
– ident: ref99
  doi: 10.1109/TCOMM.2020.3019077
– ident: ref106
  doi: 10.1007/978-3-642-25734-6_4
– start-page: 1306
  year: 2012
  ident: ref27
  article-title: Line-of-sight identification based on area measurements
  publication-title: Proc ACAI
– ident: ref11
  doi: 10.1109/TAP.2013.2297164
– ident: ref96
  doi: 10.4236/jemaa.2014.611036
– ident: ref62
  doi: 10.1109/UWBST.2003.1267850
– ident: ref98
  doi: 10.1109/TVT.2020.3037212
– start-page: 275
  year: 2009
  ident: ref92
  article-title: Using particle swarm optimization in training neural network for indoor field strength prediction
  publication-title: Proc ELMAR Int Symp
– ident: ref86
  doi: 10.23919/JCC.2019.06.007
– ident: ref34
  doi: 10.1007/s11277-017-5096-0
– volume: 2008
  start-page: 1
  year: 2008
  ident: ref30
  article-title: NLOS identification and weighted least-squares localization for UWB systems using multipath channel statistics
  publication-title: EURASIP J Adv Signal Process
– ident: ref110
  doi: 10.1109/IJCNN.2008.4634272
– ident: ref21
  doi: 10.1049/iet-map:20060273
– ident: ref20
  doi: 10.1109/ICU.2006.281616
– ident: ref37
  doi: 10.1109/ICM.2013.6734961
– start-page: 19
  year: 2017
  ident: ref111
  article-title: Long short-term memory network for wireless channel prediction
  publication-title: Proc Int Conf Signal Inf Process Netw Comput
– ident: ref75
  doi: 10.1109/ICWCUCA.2012.6402503
– ident: ref63
  doi: 10.1109/MCOM.2016.7498102
– ident: ref4
  doi: 10.1109/TAP.2020.3012792
– ident: ref43
  doi: 10.1109/LAWP.2018.2869548
– ident: ref84
  doi: 10.1109/ICCChina.2018.8641214
– ident: ref36
  doi: 10.1109/TCOMM.2012.042712.110035
– ident: ref32
  doi: 10.1109/INFOCOM.2015.7218588
– ident: ref12
  doi: 10.1109/TAP.2015.2428280
– ident: ref87
  doi: 10.1109/CVPR.2017.19
– start-page: 640
  year: 2013
  ident: ref119
  article-title: Fading channel prediction based on complex-valued neural networks in frequency domain
  publication-title: Proc Int Symp Electromagn Theory
– ident: ref8
  doi: 10.1109/TAP.2019.2934909
– ident: ref48
  doi: 10.1109/LMWC.2019.2952975
– ident: ref28
  doi: 10.1109/TVT.2013.2249121
– ident: ref17
  doi: 10.1109/TVT.2015.2473687
– ident: ref26
  doi: 10.1109/WPNC.2007.353628
– ident: ref97
  doi: 10.1109/LAWP.2019.2932904
– year: 2021
  ident: ref16
  article-title: An overview of machine learning techniques for radiowave propagation modeling
  publication-title: IEEE Trans Antennas Propag
– ident: ref53
  doi: 10.1109/APUSNCURSINRSM.2019.8888567
– ident: ref109
  doi: 10.1109/ACCESS.2018.2868480
SSID ssj0014844
Score 2.6865032
Snippet This two-part paper investigates the application of artificial intelligence (AI) and, in particular, machine learning (ML) to the study of wireless propagation...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3955
SubjectTerms Artificial intelligence
Artificial intelligence (AI)
channel modeling
channel prediction
Data processing
Decision trees
Laboratories
Literature reviews
Machine learning
machine learning (ML)
Modelling
Optimization
Propagation
Radio transmission
Random forests
scenario identification
State-of-the-art reviews
Support vector machines
Testing
Training
Wireless communication
Title Artificial Intelligence Enabled Radio Propagation for Communications-Part II: Scenario Identification and Channel Modeling
URI https://ieeexplore.ieee.org/document/9713743
https://www.proquest.com/docview/2676781765
Volume 70
WOSCitedRecordID wos000811642200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2221
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014844
  issn: 0018-926X
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsQwFL2ouNCFb3F8kYUbwTptmqaJu0FmcECk-IDZlaS5IwNDK_Nw4debpJ1BUQR3LU1L6Ul670lyzgW4SBWlhropMBRxwBSLAh0PtT1lwjCpQ1Z4pO_ThwcxGMhsBa6WWhhE9JvP8Nod-rV8UxVzN1XWlpZR2Yi3CqtpmtZareWKAROsdlyO7ACmfLBYkgxl-7mTWSJIqeWnzGb3ybcQ5Guq_PgR--jS2_7fe-3AVpNFkk4N-y6sYLkHm1-8Bffhw12s7SFI_4vvJul6tZQhj8qMKpJNLGt-9fAQm7-Sb4KRaZDZnkX6_RvyVGBpaXVFamXvsGlBVGmIUyiUOCaurppTtx_AS6_7fHsXNIUWgiKO41nATcSxiBIRKuX8YKSyLMPQBJOQa2kDOi0YN5yLiClXnhhTjVKiCE2IMlbD-BDWyqrEIyDci3NTHmk2ZMwogbE2muvI2FQiTJIWtBffPi8aF3JXDGOcezYSytyilTu08gatFlwu73irHTj-aLvv0Fm2a4BpwekC3rwZotOcOqs6EaU8Of79rhPYcM-u94WdwtpsMsczWC_eZ6Pp5Nz3vk9cktb9
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4qDAl22BgF0dGBD7sgERo7jmNzQ1MrKrqqGkXqLbLjV4SEUtQWDvv1s520KhqatFuiOEqUz857n-3vewDfM82YZX4KDGUScc1pZJKpcadcWq5MzIuA9CAbDuVkokYNuFhrYRAxbD7DS38Y1vLtrHjxU2Ud5RiVi3hb8CHlnNFKrbVeM-CSV57L1A1hJiarRclYdcbXI0cFGXMMlbv8Pn0ThEJVlb9-xSG-9D7_35vtw6c6jyTXFfBfoIHlAXzccBdswm9_sTKIIP0N503SDXopS35p-zgjo7njzQ8BIOIyWPJGMrKIRq5vkX7_itwVWDpiPSOVtndatyC6tMRrFEp8Ir6ymte3H8J9rzv-cRPVpRaiIkmSZSQsFVjQVMZae0cYpR3PsCzFNBZGuZDOCi6sEJJy7QsUY2ZQKZSxjVElepocwXY5K_EYiAjy3ExQw6ecWy0xMdYIQ61LJuI0bUFn9e3zovYh9-UwnvLAR2KVO7Ryj1Zeo9WC8_Udz5UHxz_aNj0663Y1MC1or-DN60G6yJk3q5M0E-nX9-86g92b8c9BPugPb09gzz-n2iXWhu3l_AW_wU7xunxczE9DT_wDsp3aRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Enabled+Radio+Propagation+for+Communications%E2%80%94Part+II%3A+Scenario+Identification+and+Channel+Modeling&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Huang%2C+Chen&rft.au=He%2C+Ruisi&rft.au=Ai%2C+Bo&rft.au=Molisch%2C+Andreas+F&rft.date=2022-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=70&rft.issue=6&rft.spage=3955&rft_id=info:doi/10.1109%2FTAP.2022.3149665&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon