Deciding unique decodability of bigram counts via finite automata

We revisit the problem of deciding by means of a finite automaton whether a string is uniquely decodable from its bigram counts. An efficient algorithm for constructing a polynomial-size Nondeterministic Finite Automaton (NFA) that decides unique decodability is given. This NFA may be simulated effi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computer and system sciences Ročník 80; číslo 2; s. 450 - 456
Hlavní autoři: Kontorovich, Aryeh, Trachtenberg, Ari
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.03.2014
Témata:
ISSN:0022-0000, 1090-2724
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We revisit the problem of deciding by means of a finite automaton whether a string is uniquely decodable from its bigram counts. An efficient algorithm for constructing a polynomial-size Nondeterministic Finite Automaton (NFA) that decides unique decodability is given. This NFA may be simulated efficiently in time and space. Conversely, we show that the minimum deterministic finite automaton for deciding unique decodability has exponentially many states in alphabet size, and compute the correct order of magnitude of the exponent. •We prove that the bigram-decodable strings form a regular language.•We construct a cubic-sized NFA for recognizing this language.•We show how to simulate this NFA efficiently.•We give a lower bound on the size of any DFA for this language.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-0000
1090-2724
DOI:10.1016/j.jcss.2013.09.003