Deciding unique decodability of bigram counts via finite automata

We revisit the problem of deciding by means of a finite automaton whether a string is uniquely decodable from its bigram counts. An efficient algorithm for constructing a polynomial-size Nondeterministic Finite Automaton (NFA) that decides unique decodability is given. This NFA may be simulated effi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computer and system sciences Ročník 80; číslo 2; s. 450 - 456
Hlavní autori: Kontorovich, Aryeh, Trachtenberg, Ari
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.03.2014
Predmet:
ISSN:0022-0000, 1090-2724
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We revisit the problem of deciding by means of a finite automaton whether a string is uniquely decodable from its bigram counts. An efficient algorithm for constructing a polynomial-size Nondeterministic Finite Automaton (NFA) that decides unique decodability is given. This NFA may be simulated efficiently in time and space. Conversely, we show that the minimum deterministic finite automaton for deciding unique decodability has exponentially many states in alphabet size, and compute the correct order of magnitude of the exponent. •We prove that the bigram-decodable strings form a regular language.•We construct a cubic-sized NFA for recognizing this language.•We show how to simulate this NFA efficiently.•We give a lower bound on the size of any DFA for this language.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-0000
1090-2724
DOI:10.1016/j.jcss.2013.09.003