Minimal algorithmic information loss methods for dimension reduction, feature selection and network sparsification

We present a novel, domain-agnostic, model-independent, unsupervised, and universally applicable Machine Learning approach for dimensionality reduction based on the principles of algorithmic complexity. Specifically, but without loss of generality, we focus on addressing the challenge of reducing ce...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:INFORMATION SCIENCES Ročník 720; s. 122520
Hlavní autoři: Zenil, Hector, Kiani, Narsis A., Adams, Alyssa, Abrahão, Felipe S., Rueda-Toicen, Antonio, Zea, Allan A., Ozelim, Luan, Tegnér, Jesper
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Elsevier Inc 01.12.2025
Témata:
ISSN:0020-0255
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.