A simple sub-quadratic algorithm for computing the subset partial order

A given collection of sets has a natural partial order induced by the subset relation. Let the size N of the collection be defined as the sum of the cardinalities of the sets that comprise it. Algorithms have recently been presented that compute the partial order (and thereby the minimal and maximal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters Jg. 56; H. 6; S. 337 - 341
1. Verfasser: Pritchard, Paul
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 22.12.1995
Elsevier Science
Schlagworte:
ISSN:0020-0190, 1872-6119
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A given collection of sets has a natural partial order induced by the subset relation. Let the size N of the collection be defined as the sum of the cardinalities of the sets that comprise it. Algorithms have recently been presented that compute the partial order (and thereby the minimal and maximal sets, i.e., extremal sets) in worst-case time O( N 2 log N ) . This paper develops a simple algorithm that uses only simple data structures, and gives a simple analysis that establishes the above worst-case bound on its running time. The algorithm exploits a variation on lexicographic order that may be of independent interest.
ISSN:0020-0190
1872-6119
DOI:10.1016/0020-0190(95)00165-4