Dynamic Energy Management of a Microgrid Using Approximate Dynamic Programming and Deep Recurrent Neural Network Learning

This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient management of energy storage system into MG real-time dispatch while considering power flow constraints and uncertainties in load, renewable gen...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid Vol. 10; no. 4; pp. 4435 - 4445
Main Authors: Zeng, Peng, Li, Hepeng, He, Haibo, Li, Shuhui
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1949-3053, 1949-3061
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient management of energy storage system into MG real-time dispatch while considering power flow constraints and uncertainties in load, renewable generation and real-time electricity price. The developed dynamic energy management mechanism does not require long-term forecast and optimization or distribution knowledge of the uncertainty, but can still optimize the long-term operational costs of MGs. First, the real-time scheduling problem is modeled as a finite-horizon Markov decision process over a day. Then, approximate dynamic programming and deep recurrent neural network learning are employed to derive a near optimal real-time scheduling policy. Last, using real power grid data from California independent system operator, a detailed simulation study is carried out to validate the effectiveness of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2018.2859821