Dynamic Energy Management of a Microgrid Using Approximate Dynamic Programming and Deep Recurrent Neural Network Learning

This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient management of energy storage system into MG real-time dispatch while considering power flow constraints and uncertainties in load, renewable gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid Jg. 10; H. 4; S. 4435 - 4445
Hauptverfasser: Zeng, Peng, Li, Hepeng, He, Haibo, Li, Shuhui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1949-3053, 1949-3061
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient management of energy storage system into MG real-time dispatch while considering power flow constraints and uncertainties in load, renewable generation and real-time electricity price. The developed dynamic energy management mechanism does not require long-term forecast and optimization or distribution knowledge of the uncertainty, but can still optimize the long-term operational costs of MGs. First, the real-time scheduling problem is modeled as a finite-horizon Markov decision process over a day. Then, approximate dynamic programming and deep recurrent neural network learning are employed to derive a near optimal real-time scheduling policy. Last, using real power grid data from California independent system operator, a detailed simulation study is carried out to validate the effectiveness of the proposed method.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2018.2859821