Lossy Coding of Correlated Sources Over a Multiple Access Channel: Necessary Conditions and Separation Results
Lossy coding of correlated sources over a multiple access channel (MAC) is studied. First, a joint source-channel coding scheme is presented when the decoder has correlated side information. Next, the optimality of separate source and channel coding that emerges from the availability of a common obs...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on information theory Jg. 64; H. 9; S. 6081 - 6097 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Lossy coding of correlated sources over a multiple access channel (MAC) is studied. First, a joint source-channel coding scheme is presented when the decoder has correlated side information. Next, the optimality of separate source and channel coding that emerges from the availability of a common observation at the encoders or side information at the encoders and the decoder is investigated. It is shown that separation is optimal when the encoders have access to a common observation whose lossless recovery is required at the decoder, and the two sources are independent conditioned on this common observation. Optimality of separation is also proved when the encoder and the decoder have access to shared side information conditioned on which the two sources are independent. These separation results obtained in the presence of side information are then utilized to provide a set of necessary conditions for the transmission of correlated sources over a MAC without side information. Finally, by specializing the obtained necessary conditions to the transmission of binary and Gaussian sources over a MAC, it is shown that they can potentially be tighter than the existing results in the literature, providing a novel converse for this fundamental problem. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2018.2844833 |