Lossy Coding of Correlated Sources Over a Multiple Access Channel: Necessary Conditions and Separation Results

Lossy coding of correlated sources over a multiple access channel (MAC) is studied. First, a joint source-channel coding scheme is presented when the decoder has correlated side information. Next, the optimality of separate source and channel coding that emerges from the availability of a common obs...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 64; číslo 9; s. 6081 - 6097
Hlavní autoři: Guler, Basak, Gunduz, Deniz, Yener, Aylin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Lossy coding of correlated sources over a multiple access channel (MAC) is studied. First, a joint source-channel coding scheme is presented when the decoder has correlated side information. Next, the optimality of separate source and channel coding that emerges from the availability of a common observation at the encoders or side information at the encoders and the decoder is investigated. It is shown that separation is optimal when the encoders have access to a common observation whose lossless recovery is required at the decoder, and the two sources are independent conditioned on this common observation. Optimality of separation is also proved when the encoder and the decoder have access to shared side information conditioned on which the two sources are independent. These separation results obtained in the presence of side information are then utilized to provide a set of necessary conditions for the transmission of correlated sources over a MAC without side information. Finally, by specializing the obtained necessary conditions to the transmission of binary and Gaussian sources over a MAC, it is shown that they can potentially be tighter than the existing results in the literature, providing a novel converse for this fundamental problem.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2018.2844833