TAMOLS: Terrain-Aware Motion Optimization for Legged Systems

Terrain geometry is, in general, nonsmooth, nonlinear, nonconvex, and, if perceived through a robot-centric visual unit, appears partially occluded and noisy. This article presents the complete control pipeline capable of handling the aforementioned problems in real-time. We formulate a trajectory o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on robotics Ročník 38; číslo 6; s. 3395 - 3413
Hlavní autoři: Jenelten, Fabian, Grandia, Ruben, Farshidian, Farbod, Hutter, Marco
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1552-3098, 1941-0468
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Terrain geometry is, in general, nonsmooth, nonlinear, nonconvex, and, if perceived through a robot-centric visual unit, appears partially occluded and noisy. This article presents the complete control pipeline capable of handling the aforementioned problems in real-time. We formulate a trajectory optimization problem that jointly optimizes over the base pose and footholds, subject to a height map. To avoid converging into undesirable local optima, we deploy a graduated optimization technique. We embed a compact, contact-force free stability criterion that is compatible with the nonflat ground formulation. Direct collocation is used as transcription method, resulting in a nonlinear optimization problem that can be solved online in less than ten milliseconds. To increase robustness in the presence of external disturbances, we close the tracking loop with a momentum observer. Our experiments demonstrate stair climbing, walking on stepping stones, and over gaps, utilizing various dynamic gaits.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2022.3186804