TAMOLS: Terrain-Aware Motion Optimization for Legged Systems
Terrain geometry is, in general, nonsmooth, nonlinear, nonconvex, and, if perceived through a robot-centric visual unit, appears partially occluded and noisy. This article presents the complete control pipeline capable of handling the aforementioned problems in real-time. We formulate a trajectory o...
Uloženo v:
| Vydáno v: | IEEE transactions on robotics Ročník 38; číslo 6; s. 3395 - 3413 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1552-3098, 1941-0468 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Terrain geometry is, in general, nonsmooth, nonlinear, nonconvex, and, if perceived through a robot-centric visual unit, appears partially occluded and noisy. This article presents the complete control pipeline capable of handling the aforementioned problems in real-time. We formulate a trajectory optimization problem that jointly optimizes over the base pose and footholds, subject to a height map. To avoid converging into undesirable local optima, we deploy a graduated optimization technique. We embed a compact, contact-force free stability criterion that is compatible with the nonflat ground formulation. Direct collocation is used as transcription method, resulting in a nonlinear optimization problem that can be solved online in less than ten milliseconds. To increase robustness in the presence of external disturbances, we close the tracking loop with a momentum observer. Our experiments demonstrate stair climbing, walking on stepping stones, and over gaps, utilizing various dynamic gaits. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1552-3098 1941-0468 |
| DOI: | 10.1109/TRO.2022.3186804 |