Multi‐model fusion and error parameter estimation

A robust and practical methodology for multi‐model ocean forecast fusion has been sought. Present regional ocean forecasting systems adapt and evolve in response to modelled processes. This makes it imperative that a forecast combination methodology be adaptive and capable to operate with a small sa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Quarterly Journal of the Royal Meteorological Society Ročník 131; číslo 613; s. 3397 - 3408
Hlavní autoři: Logutov, O. G., Robinson, A. R.
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 01.10.2005
Wiley
Témata:
ISSN:0035-9009, 1477-870X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A robust and practical methodology for multi‐model ocean forecast fusion has been sought. Present regional ocean forecasting systems adapt and evolve in response to modelled processes. This makes it imperative that a forecast combination methodology be adaptive and capable to operate with a small sample of past validating events. To this end, we consider an extension of maximum‐likelihood error parameter estimation to multi‐model predictive systems, and utilize the resulting methodology for adaptive Bayesian model fusion. The methodology consists of the following three general steps: (a) parametrization of forecast uncertainties through either a suitable parametric family (e.g. covariance models) or through a low‐rank approximation (e.g. flow‐dependent error subspaces); (b) update of uncertainty parameters via maximum likelihood; and (c) combining model forecasts based on their uncertainty parameters via maximum likelihood. In order to implement step (b), we have extended the maximum‐likelihood error parameter estimation methodology to multi‐model forecasting systems using the expectation‐maximization technique, with the true state‐space vector at observation locations treated as missing data. With only one forecasting model, the procedure reduces to the standard maximum‐likelihood error parameter estimation. The proposed multi‐model fusion methodology neglects cross‐model error correlations in order to gain the capability to work with a small sample of past events. We illustrate the methodology with a two‐model forecasting example (HOPS, ROMS) within the framework of the real‐time forecasting experiment held in Monterey Bay during 2003. Copyright © 2005 Royal Meteorological Society
AbstractList A robust and practical methodology for multi‐model ocean forecast fusion has been sought. Present regional ocean forecasting systems adapt and evolve in response to modelled processes. This makes it imperative that a forecast combination methodology be adaptive and capable to operate with a small sample of past validating events. To this end, we consider an extension of maximum‐likelihood error parameter estimation to multi‐model predictive systems, and utilize the resulting methodology for adaptive Bayesian model fusion. The methodology consists of the following three general steps: (a) parametrization of forecast uncertainties through either a suitable parametric family (e.g. covariance models) or through a low‐rank approximation (e.g. flow‐dependent error subspaces); (b) update of uncertainty parameters via maximum likelihood; and (c) combining model forecasts based on their uncertainty parameters via maximum likelihood. In order to implement step (b), we have extended the maximum‐likelihood error parameter estimation methodology to multi‐model forecasting systems using the expectation‐maximization technique, with the true state‐space vector at observation locations treated as missing data. With only one forecasting model, the procedure reduces to the standard maximum‐likelihood error parameter estimation. The proposed multi‐model fusion methodology neglects cross‐model error correlations in order to gain the capability to work with a small sample of past events. We illustrate the methodology with a two‐model forecasting example (HOPS, ROMS) within the framework of the real‐time forecasting experiment held in Monterey Bay during 2003. Copyright © 2005 Royal Meteorological Society
A robust and practical methodology for multi-model ocean forecast fusion has been sought. Present regional ocean forecasting systems adapt and evolve in response to modelled processes. This makes it imperative that a forecast combination methodology be adaptive and capable to operate with a small sample of past validating events. To this end, we consider an extension of maximum-likelihood error parameter estimation to multi-model predictive systems, and utilize the resulting methodology for adaptive Bayesian model fusion. The methodology consists of the following three general steps: (a) parametrization of forecast uncertainties through either a suitable parametric family (e.g. covariance models) or through a low-rank approximation (e.g. flow-dependent error subspaces); (b) update of uncertainty parameters via maximum likelihood; and (c) combining model forecasts based on their uncertainty parameters via maximum likelihood. In order to implement step (b), we have extended the maximum-likelihood error parameter estimation methodology to multi-model forecasting systems using the expectation-maximization technique, with the true state-space vector at observation locations treated as missing data. With only one forecasting model, the procedure reduces to the standard maximum-likelihood error parameter estimation. The proposed multi-model fusion methodology neglects cross-model error correlations in order to gain the capability to work with a small sample of past events. We illustrate the methodology with a two-model forecasting example (HOPS, ROMS) within the framework of the real-time forecasting experiment held in Monterey Bay during 2003.
Author Robinson, A. R.
Logutov, O. G.
Author_xml – sequence: 1
  givenname: O. G.
  surname: Logutov
  fullname: Logutov, O. G.
  email: oleg@pacific.harvard.edu
– sequence: 2
  givenname: A. R.
  surname: Robinson
  fullname: Robinson, A. R.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18054522$$DView record in Pascal Francis
BookMark eNp1kM1KAzEUhYNUsK2CjzAbxc2MyeR_KcVfFBEU3IVMJoGUdKZNZpDufASf0SdxaguC6OJyF_c75957JmDUtI0F4BjBApWUna_mBaSFlHtgjAjnueDwdQTGEGKaSwjlAZikNIcQUl7yMcAPfej85_vHoq1tyFyffNtkuqkzG2Mbs6WOemE7GzObOr_Q3TA-BPtOh2SPdn0KXq4un2c3-f3j9e3s4j43GGOSy1pUsrbIMicYgxWD3BhJHDG8khI6xLQWFbYS2dppqqUhlpZO1JjXmguMp-B067uM7aof9quFT8aGoBvb9kkhSUTJRDmAJztQJ6ODi7oxPqllHA6Oa4UEpISWG-5sy5nYphSt-0Gg2qSnVnMFqZJyQItfqPHd9_dd1D78JSBbwZsPdv2vsXq6K4fsEUZsKIK_AEhshF8
CODEN QJRMAM
CitedBy_id crossref_primary_10_3402_tellusa_v66_21640
crossref_primary_10_5194_os_6_595_2010
crossref_primary_10_1016_j_jmarsys_2007_02_001
crossref_primary_10_1016_j_jmarsys_2009_01_029
crossref_primary_10_1016_j_ocemod_2008_06_004
crossref_primary_10_1007_s10236_011_0504_6
crossref_primary_10_1080_1755876X_2018_1438341
crossref_primary_10_1029_2010GL044591
crossref_primary_10_1007_s10236_015_0897_8
crossref_primary_10_1016_j_jmarsys_2009_01_014
crossref_primary_10_1016_j_jmarsys_2009_01_036
crossref_primary_10_1016_j_jmarsys_2009_01_013
crossref_primary_10_1016_j_ocemod_2021_101912
crossref_primary_10_1016_j_ocemod_2014_11_001
crossref_primary_10_1016_j_physd_2021_133003
crossref_primary_10_1029_2022MS003123
Cites_doi 10.1109/OCEANS.2002.1192070
10.1142/5588
10.1214/ss/1009212519
10.1137/1026034
10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2
10.1002/qj.49712656705
10.1002/qj.49712555417
10.1126/science.285.5433.1548
10.1029/CE056p0077
10.1175/1520-0493(1999)127<1822:MLEOFA>2.0.CO;2
10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2
10.1016/j.ocemod.2004.08.002
10.1175/1520-0493(1999)127<1385:DAVESS>2.0.CO;2
10.1111/j.2517-6161.1977.tb01600.x
10.1007/s00703-001-0583-x
10.1016/S0377-0265(99)00008-1
ContentType Journal Article
Conference Proceeding
Copyright Copyright © 2005 Royal Meteorological Society
2006 INIST-CNRS
Copyright_xml – notice: Copyright © 2005 Royal Meteorological Society
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TG
F1W
H96
KL.
L.G
DOI 10.1256/qj.05.99
DatabaseName CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1477-870X
EndPage 3408
ExternalDocumentID 18054522
10_1256_qj_05_99
QJ200513161314
Genre article
GeographicLocations United States
California
Monterey Bay
INE, USA, California, Monterey Bay
GeographicLocations_xml – name: INE, USA, California, Monterey Bay
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XOL
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
7TG
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c3334-9d8b9de1e6f8660b607cc94f4c7b990f16aa8b3e91edfa5a9c4e52f8d37da7833
IEDL.DBID DRFUL
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239896000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-9009
IngestDate Fri Jul 11 13:08:59 EDT 2025
Sun Oct 22 16:09:44 EDT 2023
Sat Nov 29 02:22:38 EST 2025
Tue Nov 18 22:04:24 EST 2025
Wed Jan 22 17:04:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 613
Keywords ocean currents
Multimodel
Parameter estimation
Uncertainty
Error estimation
Adaptive system
Regional scope
Forecast model
Parameterization
North America
Real time system
Ocean model
Ocean and atmospheric forecasting
Adaptive methods
maximum likelihood
Data assimilation
Language English
License CC BY 4.0
LinkModel DirectLink
MeetingName 4th WMO International Symposium on Assimilation of Observations in Meteorology and Oceanography, Prague, 18-22 April 2005
MergedId FETCHMERGED-LOGICAL-c3334-9d8b9de1e6f8660b607cc94f4c7b990f16aa8b3e91edfa5a9c4e52f8d37da7833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 19482682
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_19482682
pascalfrancis_primary_18054522
crossref_primary_10_1256_qj_05_99
crossref_citationtrail_10_1256_qj_05_99
wiley_primary_10_1256_qj_05_99_QJ200513161314
PublicationCentury 2000
PublicationDate October 2005 Part C
PublicationDateYYYYMMDD 2005-10-01
PublicationDate_xml – month: 10
  year: 2005
  text: October 2005 Part C
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Quarterly Journal of the Royal Meteorological Society
PublicationYear 2005
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References 2002; 15
1999b; 29
2001
1984; 26
1977; 39
2000; 126
2005; 9
1999; 14
1999; 285
1999a; 29
1999; 125
2004
1995; 123
2002
2003; 82
1999; 127
1999
Julier S. J. (e_1_2_1_8_1) 2001
Tolstoy A. (e_1_2_1_18_1) 2004
(e_1_2_1_12_1) 1999; 29
Robinson A. R. (e_1_2_1_17_1) 2002
e_1_2_1_7_1
e_1_2_1_20_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
Dempster A. P. (e_1_2_1_4_1) 1977; 39
e_1_2_1_13_1
e_1_2_1_10_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – volume: 15
  start-page: 793
  year: 2002
  end-page: 799
  article-title: Climate predictions with multimodel ensembles
  publication-title: J. Climate
– volume: 29
  start-page: 255
  year: 1999a
  end-page: 303
  article-title: Estimation and study of mesoscale variability in the Strait of Sicily
  publication-title: Dynam. Atmos. Oceans
– volume: 126
  start-page: 2069
  year: 2000
  end-page: 2088
  article-title: Model and multi‐model spread and probabilistic seasonal forecasts in PROVOST
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 82
  start-page: 209
  year: 2003
  end-page: 226
  article-title: A Bayesian technique for estimating continuously varying statistical parameters of a variational assimilation
  publication-title: Meteorol. Atmos. Phys.
– volume: 14
  start-page: 382
  issue: 4
  year: 1999
  end-page: 417
  article-title: Bayesian model averaging: a tutorial
  publication-title: Statist. Sci.
– start-page: 475
  year: 2002
  end-page: 536
– year: 2001
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Statist. Soc. B
– start-page: 77
  year: 1999
  end-page: 100
– volume: 123
  start-page: 1128
  year: 1995
  end-page: 1145
  article-title: Online estimation of error covariance parameters for atmospheric data assimilation
  publication-title: Mon. Weather Rev.
– volume: 26
  start-page: 195
  issue: 2
  year: 1984
  end-page: 239
  article-title: Mixture densities, maximum likelihood and the EM algorithm
  publication-title: SIAM Review
– volume: 285
  start-page: 1548
  year: 1999
  end-page: 1550
  article-title: Improved weather and seasonal climate forecasts from multi‐model superensemble
  publication-title: Science
– volume: 127
  start-page: 1822
  year: 1999
  end-page: 1834
  article-title: Maximum‐likelihood estimation of forecast and observation error covariance parameters. I: Methodology
  publication-title: Mon. Weather Rev.
– volume: 9
  start-page: 347
  year: 2005
  end-page: 404
  article-title: The Regional Oceanic Modeling System: A split‐explicit, free‐surface, topography‐following‐coordinate ocean model
  publication-title: Ocean Modelling
– volume: 125
  start-page: 723
  year: 1999
  end-page: 757
  article-title: Construction of correlation functions in two and three dimensions
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 29
  start-page: 385
  year: 1999b
  end-page: 422
  article-title: Evolving the subspace of the three‐dimensional multiscale ocean variability: Massachusetts Bay
  publication-title: J. Marine Sys.
– volume: 127
  start-page: 1385
  year: 1999
  end-page: 1407
  article-title: Data assimilation via error subspace statistical estimation. Part I: Theory and schemes
  publication-title: Mon. Weather Rev.
– start-page: 325
  year: 2004
  end-page: 342
– start-page: 787
  year: 2002
  end-page: 794
– ident: e_1_2_1_19_1
  doi: 10.1109/OCEANS.2002.1192070
– start-page: 325
  volume-title: Theoretical and computational acoustics 2003
  year: 2004
  ident: e_1_2_1_18_1
  doi: 10.1142/5588
– ident: e_1_2_1_7_1
  doi: 10.1214/ss/1009212519
– ident: e_1_2_1_15_1
  doi: 10.1137/1026034
– ident: e_1_2_1_2_1
  doi: 10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2
– ident: e_1_2_1_5_1
  doi: 10.1002/qj.49712656705
– ident: e_1_2_1_6_1
  doi: 10.1002/qj.49712555417
– ident: e_1_2_1_10_1
  doi: 10.1126/science.285.5433.1548
– ident: e_1_2_1_16_1
  doi: 10.1029/CE056p0077
– ident: e_1_2_1_3_1
  doi: 10.1175/1520-0493(1999)127<1822:MLEOFA>2.0.CO;2
– ident: e_1_2_1_9_1
  doi: 10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2
– ident: e_1_2_1_20_1
  doi: 10.1016/j.ocemod.2004.08.002
– ident: e_1_2_1_13_1
  doi: 10.1175/1520-0493(1999)127<1385:DAVESS>2.0.CO;2
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_2_1_4_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_1_14_1
  doi: 10.1007/s00703-001-0583-x
– volume-title: Handbook of multisensor data fusion
  year: 2001
  ident: e_1_2_1_8_1
– ident: e_1_2_1_11_1
  doi: 10.1016/S0377-0265(99)00008-1
– volume: 29
  start-page: 385
  year: 1999
  ident: e_1_2_1_12_1
  article-title: Evolving the subspace of the three‐dimensional multiscale ocean variability: Massachusetts Bay
  publication-title: J. Marine Sys.
– start-page: 475
  volume-title: The Sea: Biological‐physical interactions in the sea
  year: 2002
  ident: e_1_2_1_17_1
SSID ssj0005727
Score 1.8712049
Snippet A robust and practical methodology for multi‐model ocean forecast fusion has been sought. Present regional ocean forecasting systems adapt and evolve in...
A robust and practical methodology for multi-model ocean forecast fusion has been sought. Present regional ocean forecasting systems adapt and evolve in...
SourceID proquest
pascalfrancis
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3397
SubjectTerms Adaptive methods
Data assimilation
Earth, ocean, space
Exact sciences and technology
External geophysics
Geophysics. Techniques, methods, instrumentation and models
Ocean and atmospheric forecasting
Other topics
Physics of the oceans
Title Multi‐model fusion and error parameter estimation
URI https://onlinelibrary.wiley.com/doi/abs/10.1256%2Fqj.05.99
https://www.proquest.com/docview/19482682
Volume 131
WOSCitedRecordID wos000239896000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1477-870X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005727
  issn: 0035-9009
  databaseCode: DRFUL
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21Sw-VUGlLEVs-aqSqPVnEseOPIwJWVUURoFJxi-zElkCQhSzbc38Cv5FfwtjJQldqD1VzSqSxEo1n4uex_R7AR20dQjYmqJbOUcT_GXVKZTTIIuQyCF4nSZYfB-rwUJ-dmaN-V2U8C9PxQzwW3GJmpP91THDrOhWSPGnF31xEyk1jnsNCjmFbDGBh72R0evC0wUP1gq28oAahRE89i623Z23nBqPFaztBv4RO0GIOcf6OW9PAM1r6n09-Da96uEl2uvh4A8988xaG3xApj9tUUCefyO7lOcLW9LQMPJ3Ivf91lyRySJjGahqxTU18245bEqnCr-IWGhLpObpzj-_gdLT_ffcL7YUVaMU5F9TU2pnaMy-DljJzMlNVZUQQlXI4OgUmrdWOe8N8HWxhTSV8kQddc1VbpTlfgUEzbvwqEGFsbrTAy2m8d8YptGAKYYRmhZdD-DzzcFn1rONR_OKyjLMPdEt5c1FmRWnMELYeLa87po0_2GzOddKToc6iWHo-hA-zXisxT-Lih238eDopmRE4k9JoQVMX_fUd5fHXWGljHLEwZ-L9P9qvwcsZu2vG1mFw2079Bryoft6eT9rNPkYfADSb6Qs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB2VFgkkxB2xXFojIXiyGq8dX8QTKqwKbFeAWtQ3y05sqVXJttkuz3wC38iXMHaSlpXgAZGnRBorkT2TOR7b5wA8184jZGOCauk9RfxfUK9UQaMs41hGwessyfJlqmYzfXhoPq7Bq-EsTMcPcVFwS5GR_9cpwFNBuiNEyGLxZ8eJc9OYK7Ah0IvQvTfefJ4cTC93eKhesZWX1CCW6LlnsfX20HYlG904dQvsmNgpWqxAzt-Ba848k1v_9c234WYPOMnrzkPuwFpo7sJoD7HyvM0ldfKC7JwcIXDNT_eA5zO5P7__yCI5JC5TPY24piahbectSWThX9MmGpIIOrqTj_fhYPJ2f2eX9tIKtOKcC2pq7U0dWJBRS1l4WaiqMiKKSnnMT5FJ57TnwbBQR1c6U4lQjqOuuaqd0pw_gPVm3oSHQIRxY6MFXl7jvTdeoQVTCCQ0K4Mcwcuhi23V844n-YsTm-Yf2C327NgWpTVmBM8uLE87ro0_2GyujNKloS6SXPp4BFvDsFmMlLT84ZowXy4sMwLnUhotaB6jv77Dfnqfam2MIxrmTDz6R_stuLa7vze103ezD4_h-sD1WrAnsH7eLsNTuFp9Oz9atJu9w_4CKzrs-w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD7YtRSh9GIrbms1hWKfQiebTC74JNqll-1ii4pvIZlJQNHZddbtc3-Cv9FfYpKZ0S60D6XzNAMnzHBOMufLSfJ9AO-ksQGyEYYltxYH_J9hK0SGPc_9gHtGyyTJcjwS47E8OVEHS7DTnYVp-CHuCm5xZKT_dRzgblr6hhAhicVfnkXOTaUewDKLGjI9WN7_MTwa3e_wEK1iK82xClii5Z4NrT90bRey0eOpmQXH-EbRYgFy_g5cU-YZPv2vb34GT1rAiXabHvIclly1Cv1vAStP6lRSR9to7_w0ANf09AJoOpN78-s6ieQgP4_1NGSqErm6ntQokoVfxE00KBJ0NCcfX8LR8OPh3ifcSivgglLKsCqlVaUjjnvJeWZ5JopCMc8KYUN-8oQbIy11irjSm9yogrl84GVJRWmEpHQNetWkcuuAmDIDJVm4rAz3VlkRLIgIQEKS3PE-vO9crIuWdzzKX5zrOP8IbtGXZzrLtVJ9eHtnOW24Nv5gs7kQpXtDmUW59EEftrqw6TBS4vKHqdxkPtNEsTCXksECpxj99R36-5dYayM0oGFK2Kt_tN-CRwf7Qz36PP76GlY6qteMbEDvqp67N_Cw-Hl1Oqs32_56C9Ld7HY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Quarterly+Journal+of+the+Royal+Meteorological+Society&rft.atitle=Multi-model+fusion+and+error+parameter+estimation&rft.au=LOGUTOV%2C+O.+G&rft.au=ROBINSON%2C+A.+R&rft.date=2005-10-01&rft.pub=Wiley&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=131&rft.issue=613&rft.spage=3397&rft.epage=3408&rft_id=info:doi/10.1256%2Fqj.05.99&rft.externalDBID=n%2Fa&rft.externalDocID=18054522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon