Wildland Forest Fire Smoke Detection Based on Faster R-CNN using Synthetic Smoke Images

In this paper, Faster R-CNN was used to detect wildland forest fire smoke to avoid the complex manually feature extraction process in traditional video smoke detection methods. Synthetic smoke images are produced by inserting real smoke or simulative smoke into forest background to solve the lack of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia engineering Jg. 211; S. 441 - 446
Hauptverfasser: Zhang, Qi-xing, Lin, Gao-hua, Zhang, Yong-ming, Xu, Gao, Wang, Jin-jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 2018
Schlagworte:
ISSN:1877-7058, 1877-7058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, Faster R-CNN was used to detect wildland forest fire smoke to avoid the complex manually feature extraction process in traditional video smoke detection methods. Synthetic smoke images are produced by inserting real smoke or simulative smoke into forest background to solve the lack of training data. The models trained by the two kinds of synthetic images respectively are tested in dataset consisting of real fire smoke images. The results show that simulative smoke is the better choice and the model is insensitive to thin smoke. It may be possible to further boost the performance by improving the synthetic process of forest fire smoke images or extending this solution to video sequences.
ISSN:1877-7058
1877-7058
DOI:10.1016/j.proeng.2017.12.034