Wildland Forest Fire Smoke Detection Based on Faster R-CNN using Synthetic Smoke Images

In this paper, Faster R-CNN was used to detect wildland forest fire smoke to avoid the complex manually feature extraction process in traditional video smoke detection methods. Synthetic smoke images are produced by inserting real smoke or simulative smoke into forest background to solve the lack of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Procedia engineering Ročník 211; s. 441 - 446
Hlavní autori: Zhang, Qi-xing, Lin, Gao-hua, Zhang, Yong-ming, Xu, Gao, Wang, Jin-jun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 2018
Predmet:
ISSN:1877-7058, 1877-7058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, Faster R-CNN was used to detect wildland forest fire smoke to avoid the complex manually feature extraction process in traditional video smoke detection methods. Synthetic smoke images are produced by inserting real smoke or simulative smoke into forest background to solve the lack of training data. The models trained by the two kinds of synthetic images respectively are tested in dataset consisting of real fire smoke images. The results show that simulative smoke is the better choice and the model is insensitive to thin smoke. It may be possible to further boost the performance by improving the synthetic process of forest fire smoke images or extending this solution to video sequences.
ISSN:1877-7058
1877-7058
DOI:10.1016/j.proeng.2017.12.034