Wildland Forest Fire Smoke Detection Based on Faster R-CNN using Synthetic Smoke Images
In this paper, Faster R-CNN was used to detect wildland forest fire smoke to avoid the complex manually feature extraction process in traditional video smoke detection methods. Synthetic smoke images are produced by inserting real smoke or simulative smoke into forest background to solve the lack of...
Uloženo v:
| Vydáno v: | Procedia engineering Ročník 211; s. 441 - 446 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
2018
|
| Témata: | |
| ISSN: | 1877-7058, 1877-7058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, Faster R-CNN was used to detect wildland forest fire smoke to avoid the complex manually feature extraction process in traditional video smoke detection methods. Synthetic smoke images are produced by inserting real smoke or simulative smoke into forest background to solve the lack of training data. The models trained by the two kinds of synthetic images respectively are tested in dataset consisting of real fire smoke images. The results show that simulative smoke is the better choice and the model is insensitive to thin smoke. It may be possible to further boost the performance by improving the synthetic process of forest fire smoke images or extending this solution to video sequences. |
|---|---|
| AbstractList | In this paper, Faster R-CNN was used to detect wildland forest fire smoke to avoid the complex manually feature extraction process in traditional video smoke detection methods. Synthetic smoke images are produced by inserting real smoke or simulative smoke into forest background to solve the lack of training data. The models trained by the two kinds of synthetic images respectively are tested in dataset consisting of real fire smoke images. The results show that simulative smoke is the better choice and the model is insensitive to thin smoke. It may be possible to further boost the performance by improving the synthetic process of forest fire smoke images or extending this solution to video sequences. |
| Author | Zhang, Yong-ming Wang, Jin-jun Zhang, Qi-xing Lin, Gao-hua Xu, Gao |
| Author_xml | – sequence: 1 givenname: Qi-xing surname: Zhang fullname: Zhang, Qi-xing – sequence: 2 givenname: Gao-hua surname: Lin fullname: Lin, Gao-hua email: lingh@mail.ustc.edu.cn – sequence: 3 givenname: Yong-ming surname: Zhang fullname: Zhang, Yong-ming – sequence: 4 givenname: Gao surname: Xu fullname: Xu, Gao – sequence: 5 givenname: Jin-jun surname: Wang fullname: Wang, Jin-jun |
| BookMark | eNqFkMFKAzEQhoNUsNa-gYe8wK7JZrfpehC0drVQKlilxxCTSU3dZksShb69u7QH8aADw_yXb5j5zlHPNQ4QuqQkpYSOrjbpzjfg1mlGKE9plhKWn6A-HXOecFKMez_yGRqGsCFdcZIVtI9WK1vrWjqNq8ZDiLiyHvBy23wAvocIKtrG4TsZQOM2VDJE8Pg5mSwW-DNYt8bLvYvvEK06UrOtXEO4QKdG1gGGxzlAr9X0ZfKYzJ8eZpPbeaIYY3nStoQSSsVAl6UkVBIgGcnKsuBvTBqTS8ZzaXKuuckLOWJc8ZE2pihBG2bYAF0f9irfhODBCGWj7I6OXtpaUCI6S2IjDpZEZ0nQTLSWWjj_Be-83Uq__w-7OWDQPvZlwYugLDgFunWnotCN_XvBN3x9haw |
| CitedBy_id | crossref_primary_10_1007_s00530_024_01359_z crossref_primary_10_3389_ffgc_2023_1136969 crossref_primary_10_3390_s21237785 crossref_primary_10_3390_sym17081269 crossref_primary_10_1108_AEAT_01_2022_0004 crossref_primary_10_1049_iet_ipr_2019_1315 crossref_primary_10_3390_fire6110441 crossref_primary_10_1109_ACCESS_2024_3406215 crossref_primary_10_1007_s00138_018_0990_3 crossref_primary_10_1088_1742_6596_1566_1_012105 crossref_primary_10_3390_fire4040075 crossref_primary_10_3390_en14061716 crossref_primary_10_1016_j_foreco_2022_120707 crossref_primary_10_37394_232033_2025_3_13 crossref_primary_10_3390_s20226442 crossref_primary_10_3390_s24092772 crossref_primary_10_1016_j_eswa_2023_120465 crossref_primary_10_1016_j_egyr_2023_05_260 crossref_primary_10_3389_fpls_2022_980425 crossref_primary_10_3390_fire6080315 crossref_primary_10_3390_math11173728 crossref_primary_10_1007_s10694_020_00986_y crossref_primary_10_3390_s22010098 crossref_primary_10_3390_s24134374 crossref_primary_10_1007_s11554_021_01124_9 crossref_primary_10_3390_rs12193177 crossref_primary_10_1049_ipr2_12205 crossref_primary_10_1186_s42408_023_00189_0 crossref_primary_10_3390_fire5020040 crossref_primary_10_1016_j_jweia_2024_105833 crossref_primary_10_3390_electronics10050566 crossref_primary_10_1016_j_fuel_2025_135518 crossref_primary_10_3390_f15071221 crossref_primary_10_1177_1748302619895433 crossref_primary_10_3390_f15010210 crossref_primary_10_3390_rs15153790 crossref_primary_10_1016_j_imavis_2019_08_007 crossref_primary_10_1016_j_engappai_2024_109902 crossref_primary_10_1155_2021_9977939 crossref_primary_10_3390_rs15112790 crossref_primary_10_1016_j_isprsjprs_2022_01_013 crossref_primary_10_1007_s11042_021_11224_0 crossref_primary_10_1088_1361_6579_ac1d59 crossref_primary_10_3390_s24175597 crossref_primary_10_1007_s11227_023_05835_7 crossref_primary_10_1109_ACCESS_2025_3560393 crossref_primary_10_3390_rs14132977 crossref_primary_10_3390_math10071190 crossref_primary_10_3390_s20195508 crossref_primary_10_1016_j_rineng_2024_102487 crossref_primary_10_3390_fire6100383 crossref_primary_10_1016_j_engappai_2025_110092 crossref_primary_10_3390_rs14041007 crossref_primary_10_1109_ACCESS_2022_3184707 crossref_primary_10_1109_JIOT_2025_3578445 crossref_primary_10_3390_rs17132259 crossref_primary_10_1080_01431161_2022_2107409 crossref_primary_10_1016_j_ijdrr_2020_101642 crossref_primary_10_1109_ACCESS_2021_3050628 crossref_primary_10_1109_TCSVT_2018_2889193 crossref_primary_10_3390_info15090538 crossref_primary_10_3389_fphy_2023_1136021 crossref_primary_10_1007_s10694_021_01199_7 crossref_primary_10_3390_f14040838 crossref_primary_10_1007_s11554_023_01331_6 crossref_primary_10_1016_j_eswa_2023_122583 crossref_primary_10_3390_f15071082 crossref_primary_10_1109_TIP_2025_3541564 crossref_primary_10_3390_fire7040151 crossref_primary_10_3390_jimaging11020067 crossref_primary_10_1016_j_jocs_2022_101638 crossref_primary_10_1155_2023_8063524 crossref_primary_10_18502_kss_v9i7_15525 crossref_primary_10_3390_app13084941 crossref_primary_10_1109_ACCESS_2020_2982994 crossref_primary_10_1016_j_neucom_2021_01_024 crossref_primary_10_3390_electronics12010228 crossref_primary_10_3390_s24030727 crossref_primary_10_3390_fire4040066 crossref_primary_10_1016_j_compag_2019_105029 crossref_primary_10_1016_j_eswa_2023_121665 crossref_primary_10_1071_WF24068 crossref_primary_10_1109_TIM_2025_3556164 crossref_primary_10_26599_TST_2021_9010072 crossref_primary_10_1016_j_eswa_2023_120330 crossref_primary_10_1016_j_jnlssr_2025_03_004 crossref_primary_10_1177_15501477211009808 crossref_primary_10_1016_j_jobe_2022_105647 crossref_primary_10_1088_1742_6596_1453_1_012149 crossref_primary_10_3390_electronics8101167 crossref_primary_10_3390_fire7010003 crossref_primary_10_1155_2023_7939516 crossref_primary_10_1109_JSEN_2024_3416548 crossref_primary_10_1016_j_sigpro_2021_108309 crossref_primary_10_1155_2024_2831905 crossref_primary_10_3390_rs14163979 crossref_primary_10_1007_s42979_021_00971_4 crossref_primary_10_3390_f15050839 crossref_primary_10_1007_s10694_024_01650_5 crossref_primary_10_1038_s41598_025_86239_w crossref_primary_10_3390_electronics13101881 crossref_primary_10_1109_ACCESS_2020_2987991 crossref_primary_10_3389_fenvs_2024_1486212 crossref_primary_10_1007_s11760_025_03910_5 crossref_primary_10_1007_s00521_022_07467_z crossref_primary_10_1016_j_asoc_2024_112015 crossref_primary_10_1109_JIOT_2024_3492347 crossref_primary_10_3390_f15101823 crossref_primary_10_3390_s24134333 crossref_primary_10_1016_j_jcp_2022_111302 crossref_primary_10_1007_s10694_022_01306_2 crossref_primary_10_1016_j_dsp_2024_104511 crossref_primary_10_1109_TCSVT_2019_2920657 crossref_primary_10_1016_j_firesaf_2021_103310 crossref_primary_10_1016_j_jobe_2022_105154 crossref_primary_10_3390_fire7100369 crossref_primary_10_1016_j_jag_2022_103052 crossref_primary_10_3390_s23208374 crossref_primary_10_1007_s11042_024_18685_z crossref_primary_10_3390_fire8020059 crossref_primary_10_1155_int_1610145 crossref_primary_10_32604_cmc_2024_050544 crossref_primary_10_3390_rs11141702 crossref_primary_10_1007_s10694_019_00832_w crossref_primary_10_3390_s19235060 crossref_primary_10_1155_2022_8396550 crossref_primary_10_3390_s23125702 crossref_primary_10_1016_j_cageo_2021_104799 crossref_primary_10_1109_JSYST_2022_3193951 crossref_primary_10_1016_j_iot_2023_101013 crossref_primary_10_1109_ACCESS_2024_3448608 crossref_primary_10_1016_j_ecoinf_2022_101584 crossref_primary_10_1109_JIOT_2022_3162016 crossref_primary_10_1109_TIP_2019_2946126 crossref_primary_10_1111_coin_12640 crossref_primary_10_1093_jcde_qwac027 crossref_primary_10_3390_app12126276 crossref_primary_10_3390_su151511527 crossref_primary_10_3233_JIFS_238164 crossref_primary_10_1177_01436244221089445 crossref_primary_10_1364_AO_399766 crossref_primary_10_3390_electronics8101131 crossref_primary_10_1109_ACCESS_2018_2869976 crossref_primary_10_3390_app11093863 crossref_primary_10_3390_f15030409 crossref_primary_10_1016_j_engappai_2024_109855 crossref_primary_10_1007_s00530_024_01489_4 crossref_primary_10_1016_j_envsoft_2023_105841 crossref_primary_10_1109_ACCESS_2024_3389979 crossref_primary_10_1007_s10694_022_01229_y crossref_primary_10_1109_ACCESS_2025_3528046 crossref_primary_10_1016_j_neucom_2022_06_026 crossref_primary_10_1016_j_asoc_2022_109799 crossref_primary_10_1109_ACCESS_2020_2990224 crossref_primary_10_1007_s11042_025_20640_5 crossref_primary_10_1016_j_neucom_2025_130513 crossref_primary_10_3390_f13071129 crossref_primary_10_3390_f14020361 crossref_primary_10_3390_rs15174136 crossref_primary_10_1016_j_compchemeng_2020_106780 crossref_primary_10_1007_s10694_019_00872_2 crossref_primary_10_1080_10095020_2024_2347922 crossref_primary_10_1371_journal_pone_0270826 crossref_primary_10_1016_j_iot_2024_101171 crossref_primary_10_1109_JIOT_2023_3277511 crossref_primary_10_1007_s10694_019_00831_x crossref_primary_10_3390_rs12223715 crossref_primary_10_3390_electronics12224566 crossref_primary_10_1080_01431161_2023_2255349 crossref_primary_10_1109_ACCESS_2025_3575057 crossref_primary_10_1016_j_neucom_2021_09_026 crossref_primary_10_1139_er_2020_0019 crossref_primary_10_1016_j_ijleo_2020_165491 crossref_primary_10_1049_ipr2_12719 crossref_primary_10_1007_s00371_025_03994_7 crossref_primary_10_1016_j_oceaneng_2022_113208 crossref_primary_10_3390_f14112158 crossref_primary_10_1007_s10694_020_01052_3 crossref_primary_10_3390_fire8090356 |
| Cites_doi | 10.1109/IECON.2016.7793196 10.1109/CIMSA.2011.6059930 10.1007/s10694-009-0110-z 10.2991/ifmeita-16.2016.105 10.1007/s10694-014-0453-y 10.1016/j.firesaf.2017.08.004 10.1016/j.firesaf.2011.01.001 10.1109/TPAMI.2016.2577031 |
| ContentType | Journal Article |
| Copyright | 2018 |
| Copyright_xml | – notice: 2018 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.proeng.2017.12.034 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1877-7058 |
| EndPage | 446 |
| ExternalDocumentID | 10_1016_j_proeng_2017_12_034 S1877705817362574 |
| GroupedDBID | --K 0R~ 0SF 1B1 4.4 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAFWJ AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADMUD AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FEDTE FNPLU HVGLF HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 OZT P2P RIG ROL SES SSZ XH2 9DU AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ~HD |
| ID | FETCH-LOGICAL-c3334-334ae9e9c3ed99a01a0e02029957b3aff4a374af47d7f45a637c76dff59edf3f3 |
| ISSN | 1877-7058 |
| IngestDate | Tue Nov 18 22:38:27 EST 2025 Sat Nov 29 02:11:07 EST 2025 Fri Feb 23 02:31:17 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | faster R-CNN deep learning synthetic smoke image wildland forest fire smoke video smoke detection |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3334-334ae9e9c3ed99a01a0e02029957b3aff4a374af47d7f45a637c76dff59edf3f3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.proeng.2017.12.034 |
| PageCount | 6 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_proeng_2017_12_034 crossref_primary_10_1016_j_proeng_2017_12_034 elsevier_sciencedirect_doi_10_1016_j_proeng_2017_12_034 |
| PublicationCentury | 2000 |
| PublicationDate | 2018 2018-00-00 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – year: 2018 text: 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Procedia engineering |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hohberg S. P., 2015. Wildfire smoke detection using convolutional neural networks, Technical report, Freie Universitt Berlin, Berlin, Germany. Xu, Zhang, Zhang (bib00010) 2017; 93 Frizzi, Kaabi, Bouchouicha (bib0007) 2016; 2016 Jia, Yuan, Wang (bib0005) 2016; 52 Genovese, Labati, Piuri (bib0009) 2011; 2011 Ren, He, Girshick (bib00011) 2017; 39 Toreyin B. U., Dedeoglu Y., Cetin A. E., 2006. Contour based smoke detection in video using wavelets, 14th European Signal Processing Conference. Yu, Fang, Wang (bib0004) 2010; 46 Genovese, A., Labati R. D., Piuri, V., et al., 2011. Wildfire smoke detection using computational intelligence techniques, 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA). Yuan (bib0002) 2011; 46 Zeiler, Fergus (bib00012) 2014; 2014 Zhang Q., Xu J., Xu L., et al., 2016. Deep Convolutional Neural Networks for Forest Fire Detection, 2016 International Forum on Management, Education and Information Technology Application. Wellhausen A., Stadler A., 2017. A Smoke Type Classification Concept for Video Smoke Detection, Proceedings of the 16th International Conference on Automatic Fire Detection AUBE’17. Genovese (10.1016/j.proeng.2017.12.034_bib0009) 2011; 2011 10.1016/j.proeng.2017.12.034_bib0006 10.1016/j.proeng.2017.12.034_bib0003 Yu (10.1016/j.proeng.2017.12.034_bib0004) 2010; 46 10.1016/j.proeng.2017.12.034_bib0008 Frizzi (10.1016/j.proeng.2017.12.034_bib0007) 2016; 2016 Jia (10.1016/j.proeng.2017.12.034_bib0005) 2016; 52 Zeiler (10.1016/j.proeng.2017.12.034_bib00012) 2014; 2014 Yuan (10.1016/j.proeng.2017.12.034_bib0002) 2011; 46 Ren (10.1016/j.proeng.2017.12.034_bib00011) 2017; 39 10.1016/j.proeng.2017.12.034_bib0001 Xu (10.1016/j.proeng.2017.12.034_bib00010) 2017; 93 10.1016/j.proeng.2017.12.034_bib00013 |
| References_xml | – volume: 93 start-page: 53 year: 2017 ident: bib00010 article-title: Deep domain adaptation based video smoke detection using synthetic smoke images publication-title: Fire Safety Journal – reference: Genovese, A., Labati R. D., Piuri, V., et al., 2011. Wildfire smoke detection using computational intelligence techniques, 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA). – volume: 2016 start-page: 877 year: 2016 ident: bib0007 article-title: Convolutional neural network for video fire and smoke detection publication-title: Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE – volume: 46 start-page: 132 year: 2011 ident: bib0002 article-title: Video-based smoke detection with histogram sequence of LBP and LBPV pyramids publication-title: Fire safety journal – volume: 52 start-page: 1271 year: 2016 ident: bib0005 article-title: A saliency-based method for early smoke detection in video sequences publication-title: Fire Technology – reference: Wellhausen A., Stadler A., 2017. A Smoke Type Classification Concept for Video Smoke Detection, Proceedings of the 16th International Conference on Automatic Fire Detection AUBE’17. – volume: 2011 start-page: 1 year: 2011 ident: bib0009 article-title: Virtual environment for synthetic smoke clouds generation publication-title: IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems – volume: 39 start-page: 1137 year: 2017 ident: bib00011 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence – reference: Zhang Q., Xu J., Xu L., et al., 2016. Deep Convolutional Neural Networks for Forest Fire Detection, 2016 International Forum on Management, Education and Information Technology Application. – volume: 2014 start-page: 818 year: 2014 ident: bib00012 article-title: Visualizing and Understanding Convolutional Networks publication-title: European Conference on Computer Vision. Springer, Cham – reference: Toreyin B. U., Dedeoglu Y., Cetin A. E., 2006. Contour based smoke detection in video using wavelets, 14th European Signal Processing Conference. – volume: 46 start-page: 651 year: 2010 ident: bib0004 article-title: Video fire smoke detection using motion and colour features publication-title: Fire technology – reference: Hohberg S. P., 2015. Wildfire smoke detection using convolutional neural networks, Technical report, Freie Universitt Berlin, Berlin, Germany. – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.proeng.2017.12.034_bib0009 article-title: Virtual environment for synthetic smoke clouds generation publication-title: IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems – volume: 2016 start-page: 877 year: 2016 ident: 10.1016/j.proeng.2017.12.034_bib0007 article-title: Convolutional neural network for video fire and smoke detection publication-title: Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE doi: 10.1109/IECON.2016.7793196 – ident: 10.1016/j.proeng.2017.12.034_bib0001 doi: 10.1109/CIMSA.2011.6059930 – volume: 46 start-page: 651 issue: 3 year: 2010 ident: 10.1016/j.proeng.2017.12.034_bib0004 article-title: Video fire smoke detection using motion and colour features publication-title: Fire technology doi: 10.1007/s10694-009-0110-z – ident: 10.1016/j.proeng.2017.12.034_bib0008 doi: 10.2991/ifmeita-16.2016.105 – volume: 52 start-page: 1271 issue: 5 year: 2016 ident: 10.1016/j.proeng.2017.12.034_bib0005 article-title: A saliency-based method for early smoke detection in video sequences publication-title: Fire Technology doi: 10.1007/s10694-014-0453-y – volume: 93 start-page: 53 year: 2017 ident: 10.1016/j.proeng.2017.12.034_bib00010 article-title: Deep domain adaptation based video smoke detection using synthetic smoke images publication-title: Fire Safety Journal doi: 10.1016/j.firesaf.2017.08.004 – ident: 10.1016/j.proeng.2017.12.034_bib0006 – ident: 10.1016/j.proeng.2017.12.034_bib0003 – ident: 10.1016/j.proeng.2017.12.034_bib00013 – volume: 46 start-page: 132 issue: 3 year: 2011 ident: 10.1016/j.proeng.2017.12.034_bib0002 article-title: Video-based smoke detection with histogram sequence of LBP and LBPV pyramids publication-title: Fire safety journal doi: 10.1016/j.firesaf.2011.01.001 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 10.1016/j.proeng.2017.12.034_bib00011 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence doi: 10.1109/TPAMI.2016.2577031 – volume: 2014 start-page: 818 year: 2014 ident: 10.1016/j.proeng.2017.12.034_bib00012 article-title: Visualizing and Understanding Convolutional Networks publication-title: European Conference on Computer Vision. Springer, Cham |
| SSID | ssj0000070251 |
| Score | 2.5453482 |
| Snippet | In this paper, Faster R-CNN was used to detect wildland forest fire smoke to avoid the complex manually feature extraction process in traditional video smoke... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 441 |
| SubjectTerms | deep learning faster R-CNN synthetic smoke image video smoke detection wildland forest fire smoke |
| Title | Wildland Forest Fire Smoke Detection Based on Faster R-CNN using Synthetic Smoke Images |
| URI | https://dx.doi.org/10.1016/j.proeng.2017.12.034 |
| Volume | 211 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-7058 dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0000070251 issn: 1877-7058 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbK4AAHNH6JwUA-cIuMujjti48wUYY0VcAGlFPkxjZsrOm0tlO5cOe_3nu2k2V0GuzAoVFk2U6T9_m95-fnz4y96GmyYmCEtESqTQvsqgQrrOuDLFXeNX71_PMuDIf5aKTedzq_670wp0dQVflyqY7_q6ixDIVNW2evIe6mUyzAexQ6XlHseP0nweM4N5SumNCpm7N5MkClluxNpj8oQ2huw9Hgr9F4GVooGGhiSkg-iu3hMFn4wMHezwq9QiJyDa3eTVDnzNperN9dgMBK7Dmb4UoE-sOBWLbKdwNZwVs9Fd8XeqX212n1TUxa9UeLWL0dl7igRHMAAd1Ayf7SXlIWNW8a9WzQnVlgwIpmOAuRyRUNH4INh2Rf8B0pNw98PDeGRC8Qav9h6Jr0wzqz7bAIvRTUS7GVFtjLDXYzBZxlURbor_NwHdEipf4wz-ZN6o2YPltw9e9c7ui0nJf9dXY3zjr4q4CWe6xjq_vsTouL8gH7UuOGB9xwwg33COANbrjHDcebgBvuccM9bniDm9gq4OYh-zR4s7-9I-KpG6KUUmYCf9oqq0ppjVK6u6W7FucU6Lb0YCy1c5mWkGmXgQGX0ViHEvrGuZ6yxkknH7G1alrZx4zLsU5zPS6dAZwYG5yc91ERjI3sG_Qbc7fBZP2JijJS0tPJKEfFVRLaYKJpdRwoWf5SH-qvX0S3MriLBWLqypZPrvmkp-w2jYQQodtka_OThX3GbpWn84PZyXMPqDPbl5lA |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wildland+Forest+Fire+Smoke+Detection+Based+on+Faster+R-CNN+using+Synthetic+Smoke+Images&rft.jtitle=Procedia+engineering&rft.au=Zhang%2C+Qi-xing&rft.au=Lin%2C+Gao-hua&rft.au=Zhang%2C+Yong-ming&rft.au=Xu%2C+Gao&rft.date=2018&rft.issn=1877-7058&rft.eissn=1877-7058&rft.volume=211&rft.spage=441&rft.epage=446&rft_id=info:doi/10.1016%2Fj.proeng.2017.12.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_proeng_2017_12_034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7058&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7058&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7058&client=summon |