Wildland Forest Fire Smoke Detection Based on Faster R-CNN using Synthetic Smoke Images

In this paper, Faster R-CNN was used to detect wildland forest fire smoke to avoid the complex manually feature extraction process in traditional video smoke detection methods. Synthetic smoke images are produced by inserting real smoke or simulative smoke into forest background to solve the lack of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia engineering Jg. 211; S. 441 - 446
Hauptverfasser: Zhang, Qi-xing, Lin, Gao-hua, Zhang, Yong-ming, Xu, Gao, Wang, Jin-jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 2018
Schlagworte:
ISSN:1877-7058, 1877-7058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, Faster R-CNN was used to detect wildland forest fire smoke to avoid the complex manually feature extraction process in traditional video smoke detection methods. Synthetic smoke images are produced by inserting real smoke or simulative smoke into forest background to solve the lack of training data. The models trained by the two kinds of synthetic images respectively are tested in dataset consisting of real fire smoke images. The results show that simulative smoke is the better choice and the model is insensitive to thin smoke. It may be possible to further boost the performance by improving the synthetic process of forest fire smoke images or extending this solution to video sequences.
AbstractList In this paper, Faster R-CNN was used to detect wildland forest fire smoke to avoid the complex manually feature extraction process in traditional video smoke detection methods. Synthetic smoke images are produced by inserting real smoke or simulative smoke into forest background to solve the lack of training data. The models trained by the two kinds of synthetic images respectively are tested in dataset consisting of real fire smoke images. The results show that simulative smoke is the better choice and the model is insensitive to thin smoke. It may be possible to further boost the performance by improving the synthetic process of forest fire smoke images or extending this solution to video sequences.
Author Zhang, Yong-ming
Wang, Jin-jun
Zhang, Qi-xing
Lin, Gao-hua
Xu, Gao
Author_xml – sequence: 1
  givenname: Qi-xing
  surname: Zhang
  fullname: Zhang, Qi-xing
– sequence: 2
  givenname: Gao-hua
  surname: Lin
  fullname: Lin, Gao-hua
  email: lingh@mail.ustc.edu.cn
– sequence: 3
  givenname: Yong-ming
  surname: Zhang
  fullname: Zhang, Yong-ming
– sequence: 4
  givenname: Gao
  surname: Xu
  fullname: Xu, Gao
– sequence: 5
  givenname: Jin-jun
  surname: Wang
  fullname: Wang, Jin-jun
BookMark eNqFkMFKAzEQhoNUsNa-gYe8wK7JZrfpehC0drVQKlilxxCTSU3dZksShb69u7QH8aADw_yXb5j5zlHPNQ4QuqQkpYSOrjbpzjfg1mlGKE9plhKWn6A-HXOecFKMez_yGRqGsCFdcZIVtI9WK1vrWjqNq8ZDiLiyHvBy23wAvocIKtrG4TsZQOM2VDJE8Pg5mSwW-DNYt8bLvYvvEK06UrOtXEO4QKdG1gGGxzlAr9X0ZfKYzJ8eZpPbeaIYY3nStoQSSsVAl6UkVBIgGcnKsuBvTBqTS8ZzaXKuuckLOWJc8ZE2pihBG2bYAF0f9irfhODBCGWj7I6OXtpaUCI6S2IjDpZEZ0nQTLSWWjj_Be-83Uq__w-7OWDQPvZlwYugLDgFunWnotCN_XvBN3x9haw
CitedBy_id crossref_primary_10_1007_s00530_024_01359_z
crossref_primary_10_3389_ffgc_2023_1136969
crossref_primary_10_3390_s21237785
crossref_primary_10_3390_sym17081269
crossref_primary_10_1108_AEAT_01_2022_0004
crossref_primary_10_1049_iet_ipr_2019_1315
crossref_primary_10_3390_fire6110441
crossref_primary_10_1109_ACCESS_2024_3406215
crossref_primary_10_1007_s00138_018_0990_3
crossref_primary_10_1088_1742_6596_1566_1_012105
crossref_primary_10_3390_fire4040075
crossref_primary_10_3390_en14061716
crossref_primary_10_1016_j_foreco_2022_120707
crossref_primary_10_37394_232033_2025_3_13
crossref_primary_10_3390_s20226442
crossref_primary_10_3390_s24092772
crossref_primary_10_1016_j_eswa_2023_120465
crossref_primary_10_1016_j_egyr_2023_05_260
crossref_primary_10_3389_fpls_2022_980425
crossref_primary_10_3390_fire6080315
crossref_primary_10_3390_math11173728
crossref_primary_10_1007_s10694_020_00986_y
crossref_primary_10_3390_s22010098
crossref_primary_10_3390_s24134374
crossref_primary_10_1007_s11554_021_01124_9
crossref_primary_10_3390_rs12193177
crossref_primary_10_1049_ipr2_12205
crossref_primary_10_1186_s42408_023_00189_0
crossref_primary_10_3390_fire5020040
crossref_primary_10_1016_j_jweia_2024_105833
crossref_primary_10_3390_electronics10050566
crossref_primary_10_1016_j_fuel_2025_135518
crossref_primary_10_3390_f15071221
crossref_primary_10_1177_1748302619895433
crossref_primary_10_3390_f15010210
crossref_primary_10_3390_rs15153790
crossref_primary_10_1016_j_imavis_2019_08_007
crossref_primary_10_1016_j_engappai_2024_109902
crossref_primary_10_1155_2021_9977939
crossref_primary_10_3390_rs15112790
crossref_primary_10_1016_j_isprsjprs_2022_01_013
crossref_primary_10_1007_s11042_021_11224_0
crossref_primary_10_1088_1361_6579_ac1d59
crossref_primary_10_3390_s24175597
crossref_primary_10_1007_s11227_023_05835_7
crossref_primary_10_1109_ACCESS_2025_3560393
crossref_primary_10_3390_rs14132977
crossref_primary_10_3390_math10071190
crossref_primary_10_3390_s20195508
crossref_primary_10_1016_j_rineng_2024_102487
crossref_primary_10_3390_fire6100383
crossref_primary_10_1016_j_engappai_2025_110092
crossref_primary_10_3390_rs14041007
crossref_primary_10_1109_ACCESS_2022_3184707
crossref_primary_10_1109_JIOT_2025_3578445
crossref_primary_10_3390_rs17132259
crossref_primary_10_1080_01431161_2022_2107409
crossref_primary_10_1016_j_ijdrr_2020_101642
crossref_primary_10_1109_ACCESS_2021_3050628
crossref_primary_10_1109_TCSVT_2018_2889193
crossref_primary_10_3390_info15090538
crossref_primary_10_3389_fphy_2023_1136021
crossref_primary_10_1007_s10694_021_01199_7
crossref_primary_10_3390_f14040838
crossref_primary_10_1007_s11554_023_01331_6
crossref_primary_10_1016_j_eswa_2023_122583
crossref_primary_10_3390_f15071082
crossref_primary_10_1109_TIP_2025_3541564
crossref_primary_10_3390_fire7040151
crossref_primary_10_3390_jimaging11020067
crossref_primary_10_1016_j_jocs_2022_101638
crossref_primary_10_1155_2023_8063524
crossref_primary_10_18502_kss_v9i7_15525
crossref_primary_10_3390_app13084941
crossref_primary_10_1109_ACCESS_2020_2982994
crossref_primary_10_1016_j_neucom_2021_01_024
crossref_primary_10_3390_electronics12010228
crossref_primary_10_3390_s24030727
crossref_primary_10_3390_fire4040066
crossref_primary_10_1016_j_compag_2019_105029
crossref_primary_10_1016_j_eswa_2023_121665
crossref_primary_10_1071_WF24068
crossref_primary_10_1109_TIM_2025_3556164
crossref_primary_10_26599_TST_2021_9010072
crossref_primary_10_1016_j_eswa_2023_120330
crossref_primary_10_1016_j_jnlssr_2025_03_004
crossref_primary_10_1177_15501477211009808
crossref_primary_10_1016_j_jobe_2022_105647
crossref_primary_10_1088_1742_6596_1453_1_012149
crossref_primary_10_3390_electronics8101167
crossref_primary_10_3390_fire7010003
crossref_primary_10_1155_2023_7939516
crossref_primary_10_1109_JSEN_2024_3416548
crossref_primary_10_1016_j_sigpro_2021_108309
crossref_primary_10_1155_2024_2831905
crossref_primary_10_3390_rs14163979
crossref_primary_10_1007_s42979_021_00971_4
crossref_primary_10_3390_f15050839
crossref_primary_10_1007_s10694_024_01650_5
crossref_primary_10_1038_s41598_025_86239_w
crossref_primary_10_3390_electronics13101881
crossref_primary_10_1109_ACCESS_2020_2987991
crossref_primary_10_3389_fenvs_2024_1486212
crossref_primary_10_1007_s11760_025_03910_5
crossref_primary_10_1007_s00521_022_07467_z
crossref_primary_10_1016_j_asoc_2024_112015
crossref_primary_10_1109_JIOT_2024_3492347
crossref_primary_10_3390_f15101823
crossref_primary_10_3390_s24134333
crossref_primary_10_1016_j_jcp_2022_111302
crossref_primary_10_1007_s10694_022_01306_2
crossref_primary_10_1016_j_dsp_2024_104511
crossref_primary_10_1109_TCSVT_2019_2920657
crossref_primary_10_1016_j_firesaf_2021_103310
crossref_primary_10_1016_j_jobe_2022_105154
crossref_primary_10_3390_fire7100369
crossref_primary_10_1016_j_jag_2022_103052
crossref_primary_10_3390_s23208374
crossref_primary_10_1007_s11042_024_18685_z
crossref_primary_10_3390_fire8020059
crossref_primary_10_1155_int_1610145
crossref_primary_10_32604_cmc_2024_050544
crossref_primary_10_3390_rs11141702
crossref_primary_10_1007_s10694_019_00832_w
crossref_primary_10_3390_s19235060
crossref_primary_10_1155_2022_8396550
crossref_primary_10_3390_s23125702
crossref_primary_10_1016_j_cageo_2021_104799
crossref_primary_10_1109_JSYST_2022_3193951
crossref_primary_10_1016_j_iot_2023_101013
crossref_primary_10_1109_ACCESS_2024_3448608
crossref_primary_10_1016_j_ecoinf_2022_101584
crossref_primary_10_1109_JIOT_2022_3162016
crossref_primary_10_1109_TIP_2019_2946126
crossref_primary_10_1111_coin_12640
crossref_primary_10_1093_jcde_qwac027
crossref_primary_10_3390_app12126276
crossref_primary_10_3390_su151511527
crossref_primary_10_3233_JIFS_238164
crossref_primary_10_1177_01436244221089445
crossref_primary_10_1364_AO_399766
crossref_primary_10_3390_electronics8101131
crossref_primary_10_1109_ACCESS_2018_2869976
crossref_primary_10_3390_app11093863
crossref_primary_10_3390_f15030409
crossref_primary_10_1016_j_engappai_2024_109855
crossref_primary_10_1007_s00530_024_01489_4
crossref_primary_10_1016_j_envsoft_2023_105841
crossref_primary_10_1109_ACCESS_2024_3389979
crossref_primary_10_1007_s10694_022_01229_y
crossref_primary_10_1109_ACCESS_2025_3528046
crossref_primary_10_1016_j_neucom_2022_06_026
crossref_primary_10_1016_j_asoc_2022_109799
crossref_primary_10_1109_ACCESS_2020_2990224
crossref_primary_10_1007_s11042_025_20640_5
crossref_primary_10_1016_j_neucom_2025_130513
crossref_primary_10_3390_f13071129
crossref_primary_10_3390_f14020361
crossref_primary_10_3390_rs15174136
crossref_primary_10_1016_j_compchemeng_2020_106780
crossref_primary_10_1007_s10694_019_00872_2
crossref_primary_10_1080_10095020_2024_2347922
crossref_primary_10_1371_journal_pone_0270826
crossref_primary_10_1016_j_iot_2024_101171
crossref_primary_10_1109_JIOT_2023_3277511
crossref_primary_10_1007_s10694_019_00831_x
crossref_primary_10_3390_rs12223715
crossref_primary_10_3390_electronics12224566
crossref_primary_10_1080_01431161_2023_2255349
crossref_primary_10_1109_ACCESS_2025_3575057
crossref_primary_10_1016_j_neucom_2021_09_026
crossref_primary_10_1139_er_2020_0019
crossref_primary_10_1016_j_ijleo_2020_165491
crossref_primary_10_1049_ipr2_12719
crossref_primary_10_1007_s00371_025_03994_7
crossref_primary_10_1016_j_oceaneng_2022_113208
crossref_primary_10_3390_f14112158
crossref_primary_10_1007_s10694_020_01052_3
crossref_primary_10_3390_fire8090356
Cites_doi 10.1109/IECON.2016.7793196
10.1109/CIMSA.2011.6059930
10.1007/s10694-009-0110-z
10.2991/ifmeita-16.2016.105
10.1007/s10694-014-0453-y
10.1016/j.firesaf.2017.08.004
10.1016/j.firesaf.2011.01.001
10.1109/TPAMI.2016.2577031
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.proeng.2017.12.034
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1877-7058
EndPage 446
ExternalDocumentID 10_1016_j_proeng_2017_12_034
S1877705817362574
GroupedDBID --K
0R~
0SF
1B1
4.4
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADMUD
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FEDTE
FNPLU
HVGLF
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
OZT
P2P
RIG
ROL
SES
SSZ
XH2
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c3334-334ae9e9c3ed99a01a0e02029957b3aff4a374af47d7f45a637c76dff59edf3f3
ISSN 1877-7058
IngestDate Tue Nov 18 22:38:27 EST 2025
Sat Nov 29 02:11:07 EST 2025
Fri Feb 23 02:31:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords faster R-CNN
deep learning
synthetic smoke image
wildland forest fire smoke
video smoke detection
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3334-334ae9e9c3ed99a01a0e02029957b3aff4a374af47d7f45a637c76dff59edf3f3
OpenAccessLink https://dx.doi.org/10.1016/j.proeng.2017.12.034
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_j_proeng_2017_12_034
crossref_primary_10_1016_j_proeng_2017_12_034
elsevier_sciencedirect_doi_10_1016_j_proeng_2017_12_034
PublicationCentury 2000
PublicationDate 2018
2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle Procedia engineering
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hohberg S. P., 2015. Wildfire smoke detection using convolutional neural networks, Technical report, Freie Universitt Berlin, Berlin, Germany.
Xu, Zhang, Zhang (bib00010) 2017; 93
Frizzi, Kaabi, Bouchouicha (bib0007) 2016; 2016
Jia, Yuan, Wang (bib0005) 2016; 52
Genovese, Labati, Piuri (bib0009) 2011; 2011
Ren, He, Girshick (bib00011) 2017; 39
Toreyin B. U., Dedeoglu Y., Cetin A. E., 2006. Contour based smoke detection in video using wavelets, 14th European Signal Processing Conference.
Yu, Fang, Wang (bib0004) 2010; 46
Genovese, A., Labati R. D., Piuri, V., et al., 2011. Wildfire smoke detection using computational intelligence techniques, 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA).
Yuan (bib0002) 2011; 46
Zeiler, Fergus (bib00012) 2014; 2014
Zhang Q., Xu J., Xu L., et al., 2016. Deep Convolutional Neural Networks for Forest Fire Detection, 2016 International Forum on Management, Education and Information Technology Application.
Wellhausen A., Stadler A., 2017. A Smoke Type Classification Concept for Video Smoke Detection, Proceedings of the 16th International Conference on Automatic Fire Detection AUBE’17.
Genovese (10.1016/j.proeng.2017.12.034_bib0009) 2011; 2011
10.1016/j.proeng.2017.12.034_bib0006
10.1016/j.proeng.2017.12.034_bib0003
Yu (10.1016/j.proeng.2017.12.034_bib0004) 2010; 46
10.1016/j.proeng.2017.12.034_bib0008
Frizzi (10.1016/j.proeng.2017.12.034_bib0007) 2016; 2016
Jia (10.1016/j.proeng.2017.12.034_bib0005) 2016; 52
Zeiler (10.1016/j.proeng.2017.12.034_bib00012) 2014; 2014
Yuan (10.1016/j.proeng.2017.12.034_bib0002) 2011; 46
Ren (10.1016/j.proeng.2017.12.034_bib00011) 2017; 39
10.1016/j.proeng.2017.12.034_bib0001
Xu (10.1016/j.proeng.2017.12.034_bib00010) 2017; 93
10.1016/j.proeng.2017.12.034_bib00013
References_xml – volume: 93
  start-page: 53
  year: 2017
  ident: bib00010
  article-title: Deep domain adaptation based video smoke detection using synthetic smoke images
  publication-title: Fire Safety Journal
– reference: Genovese, A., Labati R. D., Piuri, V., et al., 2011. Wildfire smoke detection using computational intelligence techniques, 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA).
– volume: 2016
  start-page: 877
  year: 2016
  ident: bib0007
  article-title: Convolutional neural network for video fire and smoke detection
  publication-title: Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE
– volume: 46
  start-page: 132
  year: 2011
  ident: bib0002
  article-title: Video-based smoke detection with histogram sequence of LBP and LBPV pyramids
  publication-title: Fire safety journal
– volume: 52
  start-page: 1271
  year: 2016
  ident: bib0005
  article-title: A saliency-based method for early smoke detection in video sequences
  publication-title: Fire Technology
– reference: Wellhausen A., Stadler A., 2017. A Smoke Type Classification Concept for Video Smoke Detection, Proceedings of the 16th International Conference on Automatic Fire Detection AUBE’17.
– volume: 2011
  start-page: 1
  year: 2011
  ident: bib0009
  article-title: Virtual environment for synthetic smoke clouds generation
  publication-title: IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems
– volume: 39
  start-page: 1137
  year: 2017
  ident: bib00011
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
– reference: Zhang Q., Xu J., Xu L., et al., 2016. Deep Convolutional Neural Networks for Forest Fire Detection, 2016 International Forum on Management, Education and Information Technology Application.
– volume: 2014
  start-page: 818
  year: 2014
  ident: bib00012
  article-title: Visualizing and Understanding Convolutional Networks
  publication-title: European Conference on Computer Vision. Springer, Cham
– reference: Toreyin B. U., Dedeoglu Y., Cetin A. E., 2006. Contour based smoke detection in video using wavelets, 14th European Signal Processing Conference.
– volume: 46
  start-page: 651
  year: 2010
  ident: bib0004
  article-title: Video fire smoke detection using motion and colour features
  publication-title: Fire technology
– reference: Hohberg S. P., 2015. Wildfire smoke detection using convolutional neural networks, Technical report, Freie Universitt Berlin, Berlin, Germany.
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.proeng.2017.12.034_bib0009
  article-title: Virtual environment for synthetic smoke clouds generation
  publication-title: IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems
– volume: 2016
  start-page: 877
  year: 2016
  ident: 10.1016/j.proeng.2017.12.034_bib0007
  article-title: Convolutional neural network for video fire and smoke detection
  publication-title: Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE
  doi: 10.1109/IECON.2016.7793196
– ident: 10.1016/j.proeng.2017.12.034_bib0001
  doi: 10.1109/CIMSA.2011.6059930
– volume: 46
  start-page: 651
  issue: 3
  year: 2010
  ident: 10.1016/j.proeng.2017.12.034_bib0004
  article-title: Video fire smoke detection using motion and colour features
  publication-title: Fire technology
  doi: 10.1007/s10694-009-0110-z
– ident: 10.1016/j.proeng.2017.12.034_bib0008
  doi: 10.2991/ifmeita-16.2016.105
– volume: 52
  start-page: 1271
  issue: 5
  year: 2016
  ident: 10.1016/j.proeng.2017.12.034_bib0005
  article-title: A saliency-based method for early smoke detection in video sequences
  publication-title: Fire Technology
  doi: 10.1007/s10694-014-0453-y
– volume: 93
  start-page: 53
  year: 2017
  ident: 10.1016/j.proeng.2017.12.034_bib00010
  article-title: Deep domain adaptation based video smoke detection using synthetic smoke images
  publication-title: Fire Safety Journal
  doi: 10.1016/j.firesaf.2017.08.004
– ident: 10.1016/j.proeng.2017.12.034_bib0006
– ident: 10.1016/j.proeng.2017.12.034_bib0003
– ident: 10.1016/j.proeng.2017.12.034_bib00013
– volume: 46
  start-page: 132
  issue: 3
  year: 2011
  ident: 10.1016/j.proeng.2017.12.034_bib0002
  article-title: Video-based smoke detection with histogram sequence of LBP and LBPV pyramids
  publication-title: Fire safety journal
  doi: 10.1016/j.firesaf.2011.01.001
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.proeng.2017.12.034_bib00011
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
  doi: 10.1109/TPAMI.2016.2577031
– volume: 2014
  start-page: 818
  year: 2014
  ident: 10.1016/j.proeng.2017.12.034_bib00012
  article-title: Visualizing and Understanding Convolutional Networks
  publication-title: European Conference on Computer Vision. Springer, Cham
SSID ssj0000070251
Score 2.5453482
Snippet In this paper, Faster R-CNN was used to detect wildland forest fire smoke to avoid the complex manually feature extraction process in traditional video smoke...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 441
SubjectTerms deep learning
faster R-CNN
synthetic smoke image
video smoke detection
wildland forest fire smoke
Title Wildland Forest Fire Smoke Detection Based on Faster R-CNN using Synthetic Smoke Images
URI https://dx.doi.org/10.1016/j.proeng.2017.12.034
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-7058
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0000070251
  issn: 1877-7058
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbK4AAHNH6JwUA-cIuMmtit4yNMK0NCFbAhyilyYhs21nRa26lcuPNf8-znZBmdBjtwaGRZttvkfXl-7_X5e4S8MMKWUtohA2c5Z8KlKbRMzrQbZqIsMyc4FpuQ43E-maj3vd6v5izM2bGs63y1Uif_VdTQB8L2R2evIe52UeiANggdriB2uP6T4OE9Nz5dMfFVN-eLZARKLdmfzr77DKGFxdLgr2HzMv6PgpH2TAnJR7YzHifLEDjY_1GDVeiJXHHW2ynonHnXig2nCwBYiT1nM1yLQH84ZKtO_zskK3ijZ-zbUq-N_jKrv7JpZ_xkGYd34xIXlGguJZN9pGR_aS_pi5o3i3oWdadABqy4DQuMTK5peAw2HPn9Be7R5-bJEM-NIdELhNp_bHRt-mGT2XZU4CqFX6VIswJWuUFuZhK8LJ8F-vM8XOdpkbJQzLO9k-YgZsgWXP85lxs6HePlYJPcjV4HfYVouUd6tr5P7nS4KB-Qzw1uKOKGetzQgADa4oYG3FBoIG5owA0NuKEtbuIsxM1D8mm0e7Czx2LVDVZxzgWDj7bKqopbo5Tup7pvwacAs2UgS66dE5pLoZ2QRjox0EMuKzk0zg2UNY47_ohs1LPaPia09Aasc2pgwCkXFgaAdy_6OuPOWafSLcKbR1RUkZLeV0Y5Lq6S0BZh7awTpGT5y3jZPP0impVoLhaAqStnPrnmNz0lt_2bgBG6bbKxOF3aZ-RWdbY4nJ8-D4D6DesymSw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wildland+Forest+Fire+Smoke+Detection+Based+on+Faster+R-CNN+using+Synthetic+Smoke+Images&rft.jtitle=Procedia+engineering&rft.au=Zhang%2C+Qi-xing&rft.au=Lin%2C+Gao-hua&rft.au=Zhang%2C+Yong-ming&rft.au=Xu%2C+Gao&rft.date=2018&rft.issn=1877-7058&rft.eissn=1877-7058&rft.volume=211&rft.spage=441&rft.epage=446&rft_id=info:doi/10.1016%2Fj.proeng.2017.12.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_proeng_2017_12_034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7058&client=summon