A randomized algorithm for the decomposition of matrices
Given an m × n matrix A and a positive integer k, we describe a randomized procedure for the approximation of A with a matrix Z of rank k. The procedure relies on applying A T to a collection of l random vectors, where l is an integer equal to or slightly greater than k; the scheme is efficient when...
Uložené v:
| Vydané v: | Applied and computational harmonic analysis Ročník 30; číslo 1; s. 47 - 68 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
2011
|
| Predmet: | |
| ISSN: | 1063-5203, 1096-603X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Given an
m
×
n
matrix
A and a positive integer
k, we describe a randomized procedure for the approximation of
A with a matrix
Z of rank
k. The procedure relies on applying
A
T
to a collection of
l random vectors, where
l is an integer equal to or slightly greater than
k; the scheme is efficient whenever
A and
A
T
can be applied rapidly to arbitrary vectors. The discrepancy between
A and
Z is of the same order as
l
m
times the
(
k
+
1
)
st greatest singular value
σ
k
+
1
of
A, with negligible probability of even moderately large deviations. The actual estimates derived in the paper are fairly complicated, but are simpler when
l
−
k
is a fixed small nonnegative integer. For example, according to one of our estimates for
l
−
k
=
20
, the probability that the spectral norm
‖
A
−
Z
‖
is greater than
10
(
k
+
20
)
m
σ
k
+
1
is less than
10
−
17
. The paper contains a number of estimates for
‖
A
−
Z
‖
, including several that are stronger (but more detailed) than the preceding example; some of the estimates are effectively independent of
m. Thus, given a matrix
A of limited numerical rank, such that both
A and
A
T
can be applied rapidly to arbitrary vectors, the scheme provides a simple, efficient means for constructing an accurate approximation to a singular value decomposition of
A. Furthermore, the algorithm presented here operates reliably independently of the structure of the matrix
A. The results are illustrated via several numerical examples. |
|---|---|
| AbstractList | Given an
m
×
n
matrix
A and a positive integer
k, we describe a randomized procedure for the approximation of
A with a matrix
Z of rank
k. The procedure relies on applying
A
T
to a collection of
l random vectors, where
l is an integer equal to or slightly greater than
k; the scheme is efficient whenever
A and
A
T
can be applied rapidly to arbitrary vectors. The discrepancy between
A and
Z is of the same order as
l
m
times the
(
k
+
1
)
st greatest singular value
σ
k
+
1
of
A, with negligible probability of even moderately large deviations. The actual estimates derived in the paper are fairly complicated, but are simpler when
l
−
k
is a fixed small nonnegative integer. For example, according to one of our estimates for
l
−
k
=
20
, the probability that the spectral norm
‖
A
−
Z
‖
is greater than
10
(
k
+
20
)
m
σ
k
+
1
is less than
10
−
17
. The paper contains a number of estimates for
‖
A
−
Z
‖
, including several that are stronger (but more detailed) than the preceding example; some of the estimates are effectively independent of
m. Thus, given a matrix
A of limited numerical rank, such that both
A and
A
T
can be applied rapidly to arbitrary vectors, the scheme provides a simple, efficient means for constructing an accurate approximation to a singular value decomposition of
A. Furthermore, the algorithm presented here operates reliably independently of the structure of the matrix
A. The results are illustrated via several numerical examples. Given an mxn matrix A and a positive integer k, we describe a randomized procedure for the approximation of A with a matrix Z of rank k. The procedure relies on applying A super(T) to a collection of l random vectors, where l is an integer equal to or slightly greater than k; the scheme is efficient whenever A and A super(T) can be applied rapidly to arbitrary vectors. The discrepancy between A and Z is of the same order as [inline image] times the (k+1)st greatest singular value [sigma] sub()k1of A, with negligible probability of even moderately large deviations. The actual estimates derived in the paper are fairly complicated, but are simpler when l-k is a fixed small nonnegative integer. For example, according to one of our estimates for l-k=20, the probability that the spectral norm [inline image]A-Z[inline image] is greater than [inline image] is less than 10 super(-17). The paper contains a number of estimates for [inline image]A-Z[inline image], including several that are stronger (but more detailed) than the preceding example; some of the estimates are effectively independent of m. Thus, given a matrix A of limited numerical rank, such that both A and A super(T) can be applied rapidly to arbitrary vectors, the scheme provides a simple, efficient means for constructing an accurate approximation to a singular value decomposition of A. Furthermore, the algorithm presented here operates reliably independently of the structure of the matrix A. The results are illustrated via several numerical examples. |
| Author | Rokhlin, Vladimir Tygert, Mark Martinsson, Per-Gunnar |
| Author_xml | – sequence: 1 givenname: Per-Gunnar surname: Martinsson fullname: Martinsson, Per-Gunnar email: per-gunnar.martinsson@colorado.edu organization: Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309, United States – sequence: 2 givenname: Vladimir surname: Rokhlin fullname: Rokhlin, Vladimir organization: Departments of Computer Science, Mathematics, and Physics, Yale University, New Haven, CT 06511, United States – sequence: 3 givenname: Mark surname: Tygert fullname: Tygert, Mark email: tygert@aya.yale.edu organization: Courant Institute of Mathematical Sciences, NYU, New York, NY 10012, United States |
| BookMark | eNp9kE1Lw0AQhhepYFv9A55y85Q6m68m4KUUv6DgRcHbMpmd2C1Jtu5uBf31JtSTh55mGN5nmHlmYtLbnoW4lrCQIIvb3QJpi4sEhgEkC4D0TEwlVEVcQPo-GfsijfME0gsx834HIGWWV1NRriKHvbad-WEdYfthnQnbLmqsi8KWI81ku731JhjbR7aJOgzOEPtLcd5g6_nqr87F28P96_op3rw8Pq9Xm5jSNAkxL-u6Ai7rJktyQixqnaGssiatCqKKEo2N1ppQgyaNS5lLWNZI1GRUFcjpXNwc9-6d_TywD6oznrhtsWd78KrMqmxZ5FAOyfKYJGe9d9woMgHHu4ND0yoJanSldmp0pUZXChI1uBrQ5B-6d6ZD930aujtCPLz_ZdgpT4Z7Ym0cU1DamlP4L6Yohqc |
| CitedBy_id | crossref_primary_10_1016_j_acha_2016_04_006 crossref_primary_10_1016_j_cam_2023_115215 crossref_primary_10_1111_joa_12645 crossref_primary_10_1016_j_acha_2017_04_002 crossref_primary_10_1016_j_cam_2024_116143 crossref_primary_10_1137_23M1584733 crossref_primary_10_1007_s00162_017_0432_2 crossref_primary_10_1016_j_jcp_2020_109704 crossref_primary_10_1002_cpa_21755 crossref_primary_10_1137_12087116X crossref_primary_10_1093_mtomcs_mfac078 crossref_primary_10_1007_s10444_025_10232_0 crossref_primary_10_1109_ACCESS_2023_3325348 crossref_primary_10_1007_s13042_016_0571_6 crossref_primary_10_1109_TAP_2018_2794059 crossref_primary_10_1007_s10489_022_03346_1 crossref_primary_10_1002_nla_2338 crossref_primary_10_1007_s13755_020_00104_w crossref_primary_10_1016_j_acha_2021_02_005 crossref_primary_10_1016_j_ecolind_2025_113339 crossref_primary_10_1016_j_patcog_2025_111610 crossref_primary_10_1007_s42967_020_00061_x crossref_primary_10_1007_s00466_021_02096_0 crossref_primary_10_1137_22M148402X crossref_primary_10_1016_j_apnum_2020_09_013 crossref_primary_10_3390_universe8110570 crossref_primary_10_1016_j_jcp_2015_11_040 crossref_primary_10_1088_1361_6420_aab92d crossref_primary_10_1016_j_cam_2020_113380 crossref_primary_10_1137_20M1335571 crossref_primary_10_1137_15M1044680 crossref_primary_10_1137_18M118966X crossref_primary_10_1177_10943420221085000 crossref_primary_10_1038_s41467_024_50150_1 crossref_primary_10_1016_j_jcp_2017_03_060 crossref_primary_10_1137_20M1343993 crossref_primary_10_1137_15M1013894 crossref_primary_10_1190_geo2015_0066_1 crossref_primary_10_1137_17M1150013 crossref_primary_10_1109_TKDE_2020_3015777 crossref_primary_10_1016_j_neuroimage_2013_10_027 crossref_primary_10_1016_j_acha_2015_09_007 crossref_primary_10_1137_15M1030200 crossref_primary_10_1016_j_procs_2015_05_293 crossref_primary_10_1137_21M143786X crossref_primary_10_1016_j_jcp_2011_12_032 crossref_primary_10_1137_15M1026468 crossref_primary_10_1002_nla_2046 crossref_primary_10_1109_TAP_2022_3181016 crossref_primary_10_1016_j_renene_2022_09_058 crossref_primary_10_1146_annurev_orgpsych_032117_104553 crossref_primary_10_1007_s10444_018_09655_9 crossref_primary_10_1016_j_memsci_2025_124207 crossref_primary_10_1103_PhysRevResearch_2_033172 crossref_primary_10_3390_su16125246 crossref_primary_10_1109_ACCESS_2018_2810267 crossref_primary_10_1016_j_eswa_2023_122984 crossref_primary_10_1016_j_compstruc_2025_107867 crossref_primary_10_1137_19M1237016 crossref_primary_10_1016_j_jcp_2019_108996 crossref_primary_10_1111_jopy_12674 crossref_primary_10_1007_s00454_010_9309_5 crossref_primary_10_1088_2632_2153_ab9c3c crossref_primary_10_2514_1_J060131 crossref_primary_10_1007_s00466_024_02517_w crossref_primary_10_1007_s00453_014_9891_7 crossref_primary_10_1109_TAP_2019_2963619 crossref_primary_10_1109_TPAMI_2015_2392754 crossref_primary_10_1016_j_enganabound_2013_10_003 crossref_primary_10_1016_j_jcp_2014_10_009 crossref_primary_10_1016_j_eswa_2018_05_023 crossref_primary_10_1137_090771806 crossref_primary_10_3934_ipi_2013_7_1215 crossref_primary_10_1016_j_jcp_2018_04_015 crossref_primary_10_1016_j_enganabound_2012_02_003 crossref_primary_10_1109_ACCESS_2023_3288889 crossref_primary_10_1016_j_eswa_2024_123462 crossref_primary_10_1155_2023_3819587 crossref_primary_10_4208_nmtma_2017_m1624 crossref_primary_10_1007_s00466_017_1407_2 crossref_primary_10_1016_j_ijepes_2022_108516 crossref_primary_10_1007_s00211_017_0880_z crossref_primary_10_1016_j_oregeorev_2021_104213 crossref_primary_10_1137_15M1026080 crossref_primary_10_1137_15M1023774 crossref_primary_10_1002_nla_2026 crossref_primary_10_1109_TAP_2017_2727511 crossref_primary_10_1007_s11257_021_09314_7 crossref_primary_10_1137_18M1201068 crossref_primary_10_1016_j_mser_2024_100832 crossref_primary_10_1109_TAP_2019_2952014 crossref_primary_10_1137_16M1081270 crossref_primary_10_1145_3242670 crossref_primary_10_1137_15M1016679 crossref_primary_10_2514_1_J058943 crossref_primary_10_1016_j_cma_2024_117538 crossref_primary_10_1016_j_neucom_2024_127490 crossref_primary_10_1016_j_ymssp_2024_112264 crossref_primary_10_1137_17M1111590 crossref_primary_10_1016_j_advengsoft_2017_12_007 crossref_primary_10_1007_s10957_023_02177_5 crossref_primary_10_3390_rs16061102 crossref_primary_10_1016_j_jcp_2023_112491 crossref_primary_10_1016_j_laa_2012_04_035 crossref_primary_10_1109_TBDATA_2016_2617883 crossref_primary_10_1137_22M1481002 crossref_primary_10_1016_j_laa_2021_01_007 crossref_primary_10_1088_0004_637X_802_2_107 crossref_primary_10_1016_j_jcp_2017_04_054 crossref_primary_10_1137_140990073 crossref_primary_10_1016_j_ultrasmedbio_2024_12_016 crossref_primary_10_1016_j_camwa_2018_04_028 crossref_primary_10_1007_s00211_013_0582_0 crossref_primary_10_1007_s00211_021_01250_3 crossref_primary_10_1016_j_acha_2012_03_002 crossref_primary_10_1016_j_aei_2023_102266 crossref_primary_10_1016_j_crmeth_2025_101181 crossref_primary_10_1016_j_neuroimage_2016_10_045 crossref_primary_10_1088_2515_7639_ad80cd crossref_primary_10_1107_S1600577523001674 crossref_primary_10_1137_110851110 crossref_primary_10_1038_s41598_024_76491_x crossref_primary_10_1109_TGRS_2025_3533259 crossref_primary_10_1021_acs_jpcc_5c02779 crossref_primary_10_1137_21M1418319 crossref_primary_10_1088_2632_2153_ab8240 crossref_primary_10_1177_0956797616678187 crossref_primary_10_1145_3725357 crossref_primary_10_1016_j_neuroimage_2014_12_040 crossref_primary_10_1089_cmb_2018_0027 crossref_primary_10_1088_1361_6420_aa6cbd crossref_primary_10_1016_j_seppur_2023_124964 crossref_primary_10_1137_120874540 crossref_primary_10_1002_nla_2515 crossref_primary_10_1016_j_enganabound_2022_11_035 crossref_primary_10_1016_j_jcp_2011_09_008 crossref_primary_10_1016_j_jcp_2019_07_027 crossref_primary_10_1137_100786617 crossref_primary_10_1186_s13040_024_00373_1 crossref_primary_10_1016_j_cam_2020_112797 crossref_primary_10_1109_TAP_2020_3048497 crossref_primary_10_1016_j_jcp_2011_03_048 crossref_primary_10_1016_j_ccst_2025_100373 crossref_primary_10_1109_TUFFC_2022_3158830 crossref_primary_10_1145_3507466 crossref_primary_10_1080_03081087_2016_1267104 crossref_primary_10_1137_120867287 crossref_primary_10_1137_17M1138480 crossref_primary_10_1063_5_0278371 crossref_primary_10_1177_10943420231179699 crossref_primary_10_1021_acsami_3c13533 crossref_primary_10_1080_15376494_2022_2102274 crossref_primary_10_1007_s10994_020_05937_w crossref_primary_10_1007_s10444_020_09816_9 crossref_primary_10_1109_TSP_2012_2190410 crossref_primary_10_1371_journal_pone_0225265 crossref_primary_10_1088_1538_3873_abfe9d crossref_primary_10_1016_j_cviu_2016_02_005 crossref_primary_10_1137_15M104582X crossref_primary_10_1016_j_camwa_2016_09_014 crossref_primary_10_1137_15M1040827 |
| Cites_doi | 10.1016/0024-3795(94)90493-6 10.1007/s006070070031 10.1145/1067967.1067972 10.1090/S0002-9939-1951-0041539-X 10.1137/0913043 10.1137/040616413 10.21236/ADA458927 10.1016/S0024-3795(96)00301-1 10.1137/030602678 10.2140/camcos.2006.1.133 10.1007/BF02358985 10.1007/s002110050451 10.1137/0917055 10.1006/jcss.2000.1711 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Inc. |
| Copyright_xml | – notice: 2010 Elsevier Inc. |
| DBID | 6I. AAFTH AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1016/j.acha.2010.02.003 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1096-603X |
| EndPage | 68 |
| ExternalDocumentID | 10_1016_j_acha_2010_02_003 S1063520310000242 |
| GrantInformation_xml | – fundername: DARPA grantid: HR0011-05-1-0002 – fundername: U.S. DoD grantid: F49620-03-C-0031 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M26 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c332t-e7bb90e8bf425caa6bd4a194f396cc9c2dafdddcad0dcda715107baccf4c96ae3 |
| ISICitedReferencesCount | 234 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285223600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-5203 |
| IngestDate | Wed Oct 01 15:03:50 EDT 2025 Tue Nov 18 22:42:26 EST 2025 Sat Nov 29 05:58:34 EST 2025 Fri Feb 23 02:28:04 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | SVD Lanczos Randomized Matrix Algorithm Low rank |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c332t-e7bb90e8bf425caa6bd4a194f396cc9c2dafdddcad0dcda715107baccf4c96ae3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.acha.2010.02.003 |
| PQID | 849476508 |
| PQPubID | 23500 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_849476508 crossref_citationtrail_10_1016_j_acha_2010_02_003 crossref_primary_10_1016_j_acha_2010_02_003 elsevier_sciencedirect_doi_10_1016_j_acha_2010_02_003 |
| PublicationCentury | 2000 |
| PublicationDate | 2011 2011-01-00 20110101 |
| PublicationDateYYYYMMDD | 2011-01-01 |
| PublicationDate_xml | – year: 2011 text: 2011 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied and computational harmonic analysis |
| PublicationYear | 2011 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Goreinov, Tyrtyshnikov, Zamarashkin (br0090) 1997; 62 P.-G. Martinsson, V. Rokhlin, M. Tygert, A randomized algorithm for the approximation of matrices, Tech. Rep., 1361, Yale University Department of Computer Science, June 2006. Goreinov, Tyrtyshnikov, Zamarashkin (br0100) 1997; 261 Goreinov, Tyrtyshnikov (br0080) 2001; vol. 280 Sarlós (br0160) 2006 Gu, Eisenstat (br0110) 1996; 17 Press, Teukolsky, Vetterling, Flannery (br0150) 1992 Tyrtyshnikov (br0180) 2000; 64 Stewart (br0170) 1999; 83 Björck (br0020) 1994; 197–198 Goldstine, von Neumann (br0060) 1951; 2 Martinsson, Rokhlin, Tygert (br0120) 2006; 1 Berry, Pulatova, Stewart (br0010) 2005; 31 Cheng, Gimbutas, Martinsson, Rokhlin (br0050) 2005; 26 Chan, Hansen (br0030) 1992; 13 Wilkinson (br0190) 1965 Golub, Van Loan (br0070) 1996 Papadimitriou, Raghavan, Tamaki, Vempala (br0140) 2000; 61 Chen, Dongarra (br0040) 2005; 27 Chen (10.1016/j.acha.2010.02.003_br0040) 2005; 27 Tyrtyshnikov (10.1016/j.acha.2010.02.003_br0180) 2000; 64 Björck (10.1016/j.acha.2010.02.003_br0020) 1994; 197–198 10.1016/j.acha.2010.02.003_br0130 Chan (10.1016/j.acha.2010.02.003_br0030) 1992; 13 Martinsson (10.1016/j.acha.2010.02.003_br0120) 2006; 1 Papadimitriou (10.1016/j.acha.2010.02.003_br0140) 2000; 61 Berry (10.1016/j.acha.2010.02.003_br0010) 2005; 31 Goreinov (10.1016/j.acha.2010.02.003_br0090) 1997; 62 Goreinov (10.1016/j.acha.2010.02.003_br0080) 2001; vol. 280 Wilkinson (10.1016/j.acha.2010.02.003_br0190) 1965 Sarlós (10.1016/j.acha.2010.02.003_br0160) 2006 Press (10.1016/j.acha.2010.02.003_br0150) 1992 Stewart (10.1016/j.acha.2010.02.003_br0170) 1999; 83 Goldstine (10.1016/j.acha.2010.02.003_br0060) 1951; 2 Golub (10.1016/j.acha.2010.02.003_br0070) 1996 Gu (10.1016/j.acha.2010.02.003_br0110) 1996; 17 Cheng (10.1016/j.acha.2010.02.003_br0050) 2005; 26 Goreinov (10.1016/j.acha.2010.02.003_br0100) 1997; 261 |
| References_xml | – volume: 13 start-page: 727 year: 1992 end-page: 741 ident: br0030 article-title: Some applications of the rank-revealing QR factorization publication-title: SIAM J. Sci. Stat. Comput. – volume: 61 start-page: 217 year: 2000 end-page: 235 ident: br0140 article-title: Latent semantic indexing: A probabilistic analysis publication-title: J. Comput. System Sci. – reference: P.-G. Martinsson, V. Rokhlin, M. Tygert, A randomized algorithm for the approximation of matrices, Tech. Rep., 1361, Yale University Department of Computer Science, June 2006. – volume: 64 start-page: 367 year: 2000 end-page: 380 ident: br0180 article-title: Incomplete cross approximation in the mosaic-skeleton method publication-title: Computing – volume: 27 start-page: 603 year: 2005 end-page: 620 ident: br0040 article-title: Condition numbers of Gaussian random matrices publication-title: SIAM J. Matrix Anal. Appl. – volume: 62 start-page: 515 year: 1997 end-page: 519 ident: br0090 article-title: Pseudo-skeleton approximations by matrices of maximal volume publication-title: Math. Notes – volume: 83 start-page: 313 year: 1999 end-page: 323 ident: br0170 article-title: Four algorithms for the efficient computation of truncated pivoted QR approximations to a sparse matrix publication-title: Numer. Math. – year: 1965 ident: br0190 article-title: The Algebraic Eigenvalue Problem – volume: 31 start-page: 252 year: 2005 end-page: 269 ident: br0010 article-title: Algorithm 844: Computing sparse reduced-rank approximations to sparse matrices publication-title: ACM Trans. Math. Software – volume: 17 start-page: 848 year: 1996 end-page: 869 ident: br0110 article-title: Efficient algorithms for computing a strong rank-revealing QR factorization publication-title: SIAM J. Sci. Comput. – volume: vol. 280 start-page: 47 year: 2001 end-page: 51 ident: br0080 article-title: The maximal-volume concept in approximation by low-rank matrices publication-title: Structured Matrices in Mathematics, Computer Science, and Engineering I: Proceedings of an AMS–IMS–SIAM Joint Summer Research Conference – volume: 2 start-page: 188 year: 1951 end-page: 202 ident: br0060 article-title: Numerical inverting of matrices of high order, II publication-title: Proc. Amer. Math. Soc. – year: 1992 ident: br0150 article-title: Numerical Recipes – start-page: 143 year: 2006 end-page: 152 ident: br0160 article-title: Improved approximation algorithms for large matrices via random projections publication-title: Proceedings of FOCS 2006, the 47th Annual IEEE Symposium on Foundations of Computer Science – year: 1996 ident: br0070 article-title: Matrix Computations – volume: 1 start-page: 133 year: 2006 end-page: 142 ident: br0120 article-title: On interpolation and integration in finite-dimensional spaces of bounded functions publication-title: Commun. Appl. Math. Comput. Sci. – volume: 261 start-page: 1 year: 1997 end-page: 21 ident: br0100 article-title: A theory of pseudoskeleton approximations publication-title: Linear Algebra Appl. – volume: 26 start-page: 1389 year: 2005 end-page: 1404 ident: br0050 article-title: On the compression of low rank matrices publication-title: SIAM J. Sci. Comput. – volume: 197–198 start-page: 297 year: 1994 end-page: 316 ident: br0020 article-title: Numerics of Gram–Schmidt orthogonalization publication-title: Linear Algebra Appl. – volume: 197–198 start-page: 297 year: 1994 ident: 10.1016/j.acha.2010.02.003_br0020 article-title: Numerics of Gram–Schmidt orthogonalization publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(94)90493-6 – volume: 64 start-page: 367 issue: 4 year: 2000 ident: 10.1016/j.acha.2010.02.003_br0180 article-title: Incomplete cross approximation in the mosaic-skeleton method publication-title: Computing doi: 10.1007/s006070070031 – volume: 31 start-page: 252 issue: 2 year: 2005 ident: 10.1016/j.acha.2010.02.003_br0010 article-title: Algorithm 844: Computing sparse reduced-rank approximations to sparse matrices publication-title: ACM Trans. Math. Software doi: 10.1145/1067967.1067972 – volume: 2 start-page: 188 year: 1951 ident: 10.1016/j.acha.2010.02.003_br0060 article-title: Numerical inverting of matrices of high order, II publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1951-0041539-X – start-page: 143 year: 2006 ident: 10.1016/j.acha.2010.02.003_br0160 article-title: Improved approximation algorithms for large matrices via random projections – volume: 13 start-page: 727 issue: 3 year: 1992 ident: 10.1016/j.acha.2010.02.003_br0030 article-title: Some applications of the rank-revealing QR factorization publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0913043 – volume: 27 start-page: 603 issue: 3 year: 2005 ident: 10.1016/j.acha.2010.02.003_br0040 article-title: Condition numbers of Gaussian random matrices publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/040616413 – ident: 10.1016/j.acha.2010.02.003_br0130 doi: 10.21236/ADA458927 – volume: vol. 280 start-page: 47 year: 2001 ident: 10.1016/j.acha.2010.02.003_br0080 article-title: The maximal-volume concept in approximation by low-rank matrices – volume: 261 start-page: 1 issue: 1–3 year: 1997 ident: 10.1016/j.acha.2010.02.003_br0100 article-title: A theory of pseudoskeleton approximations publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(96)00301-1 – year: 1992 ident: 10.1016/j.acha.2010.02.003_br0150 – year: 1996 ident: 10.1016/j.acha.2010.02.003_br0070 – volume: 26 start-page: 1389 issue: 4 year: 2005 ident: 10.1016/j.acha.2010.02.003_br0050 article-title: On the compression of low rank matrices publication-title: SIAM J. Sci. Comput. doi: 10.1137/030602678 – year: 1965 ident: 10.1016/j.acha.2010.02.003_br0190 – volume: 1 start-page: 133 year: 2006 ident: 10.1016/j.acha.2010.02.003_br0120 article-title: On interpolation and integration in finite-dimensional spaces of bounded functions publication-title: Commun. Appl. Math. Comput. Sci. doi: 10.2140/camcos.2006.1.133 – volume: 62 start-page: 515 issue: 4 year: 1997 ident: 10.1016/j.acha.2010.02.003_br0090 article-title: Pseudo-skeleton approximations by matrices of maximal volume publication-title: Math. Notes doi: 10.1007/BF02358985 – volume: 83 start-page: 313 issue: 2 year: 1999 ident: 10.1016/j.acha.2010.02.003_br0170 article-title: Four algorithms for the efficient computation of truncated pivoted QR approximations to a sparse matrix publication-title: Numer. Math. doi: 10.1007/s002110050451 – volume: 17 start-page: 848 issue: 4 year: 1996 ident: 10.1016/j.acha.2010.02.003_br0110 article-title: Efficient algorithms for computing a strong rank-revealing QR factorization publication-title: SIAM J. Sci. Comput. doi: 10.1137/0917055 – volume: 61 start-page: 217 year: 2000 ident: 10.1016/j.acha.2010.02.003_br0140 article-title: Latent semantic indexing: A probabilistic analysis publication-title: J. Comput. System Sci. doi: 10.1006/jcss.2000.1711 |
| SSID | ssj0011459 |
| Score | 2.4563847 |
| Snippet | Given an
m
×
n
matrix
A and a positive integer
k, we describe a randomized procedure for the approximation of
A with a matrix
Z of rank
k. The procedure relies... Given an mxn matrix A and a positive integer k, we describe a randomized procedure for the approximation of A with a matrix Z of rank k. The procedure relies... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 47 |
| SubjectTerms | Algorithm Algorithms Approximation Decomposition Estimates Integers Lanczos Low rank Mathematical analysis Matrix Randomized SVD Vectors (mathematics) |
| Title | A randomized algorithm for the decomposition of matrices |
| URI | https://dx.doi.org/10.1016/j.acha.2010.02.003 https://www.proquest.com/docview/849476508 |
| Volume | 30 |
| WOSCitedRecordID | wos000285223600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-603X dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0011459 issn: 1063-5203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag4wEeEFcxYMgPvE2R0sT15bFC2xiCaYIy9S1ybGft1iZV06LBr-f4EncrYgIkpCpN3Nzqc3R8rt9B6C0zipQD0NwqY8qEUDBQSm5owlLBDBFVZlxvwLOP7OSEj8fiNHiVWtdOgNU1v7oSi_9KahgDYtvS2b8gd7wpDMA-EB22QHbY_hHhh_uw_OhmPv0BuqScnTdg_k_mMZ1QG5tFHlK1XHTdgfSHVMIOjzbopqHobbFedT5Di3TtmubIgGaycWlbPII2FHCdmmVyBLqxjLm_n5vLSWgOfzaTejqfxp9G38-3K4d051jduMW60pgbmZtgauZg5aZeepkwJmhCU9cAOIrfEJa5zmZelnokzrAq-947v8h773q4AN6byJCnZwFY883qFnMOv9g3si_kIhqgmdxFOxkDe6qHdobHB-MPMfjUJ67HXvwHodbKpwVuP-l3-szWyu7UldEj9DDYGXjo-eMxumPqJ-jBNfRJOPoUIXvbp4gP8YZvcOQbDHyD4TR8g29wU-GOb56hr4cHo3fvk9BWI1F5nq0Sw8pSpIaXFchrJSUtNZF9QapcUKWEyrSstNZK6lQrLRnohCkrpVIVUYJKkz9HvbqpzQuEmVQ5HYAFTUErlQPDK8nhS9KMqIxwvYv63eQUKmDO29Yns6JLLrwo7IQWdkKLNLNItbtoP16z8Igrt5496Oa8CDqj1wULYJFbr8MdgQoQqDZKJmvTrNuCE0GYtVte_uOtX6H7PvBgP69Rb7Vcmz10T31bTdvlm8BsPwHchKAN |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+randomized+algorithm+for+the+decomposition+of+matrices&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Martinsson%2C+Per-Gunnar&rft.au=Rokhlin%2C+Vladimir&rft.au=Tygert%2C+Mark&rft.date=2011&rft.pub=Elsevier+Inc&rft.issn=1063-5203&rft.eissn=1096-603X&rft.volume=30&rft.issue=1&rft.spage=47&rft.epage=68&rft_id=info:doi/10.1016%2Fj.acha.2010.02.003&rft.externalDocID=S1063520310000242 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon |