Mapping with height and spectral remote sensing implies that environment and forest structure jointly constrain tree community composition in temperate coniferous forests of eastern Washington, United States
Maps of species composition are important for assessing a wide range of ecosystem functions in forested landscapes, including processes shaping community structure at broader (e.g., climate) and finer (e.g., disturbance) scales. Incorporating recently available remotely sensed datasets has the poten...
Saved in:
| Published in: | Frontiers in Forests and Global Change Vol. 5; p. 962816 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Lausanne
Frontiers Media SA
22.11.2022
Frontiers Media S.A |
| Subjects: | |
| ISSN: | 2624-893X, 2624-893X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Maps of species composition are important for assessing a wide range of ecosystem functions in forested landscapes, including processes shaping community structure at broader (e.g., climate) and finer (e.g., disturbance) scales. Incorporating recently available remotely sensed datasets has the potential to improve species composition mapping by providing information to help predict species presence and relative abundance. Using USDA Forest Service Forest Inventory and Analysis plot data and the gradient nearest neighbor imputation modeling approach in eastern Washington, USA, we developed tree species composition and structure maps based on climate, topography, and two sources of remote sensing: height from digital aerial photogrammetry (DAP) of pushbroom aerial photography and Sentinel-2 multispectral satellite imagery. We tested the accuracy of these maps based on their capacity to predict species occurrence and proportional basal area for 10 coniferous tree species. In this study region, climate, topography, and location explained much of the species occurrence patterns, while both DAP and Sentinel-2 data were also important in predicting species proportional basal area. Overall accuracies for the best species occurrence model were 68–92% and
R
2
for the proportional basal area was 0.08–0.55. Comparisons of model accuracy with and without remote sensing indicated that adding some combination of DAP metrics and/or Sentinel-2 imagery increased
R
2
for the proportional basal area by 0.25–0.45, but had minor and sometimes negative effects on model skill and accuracy for species occurrence. Thus, species ranges appear most strongly constrained by environmental gradients, but abundance depends on forest structure, which is often determined by both environment and disturbance history. For example, proportional basal area responses to moisture limitation and canopy height varied by species, likely contributing to regional patterns of species dominance. However, local-scale examples indicated that remotely sensed forest structures representing recent disturbance patterns likely impacted tree community composition. Overall, our results suggest that characterizing geospatial patterns in tree communities across large landscapes may require not only environmental factors like climate and topography, but also information on forest structure provided by remote sensing. |
|---|---|
| AbstractList | Maps of species composition are important for assessing a wide range of ecosystem functions in forested landscapes, including processes shaping community structure at broader (e.g., climate) and finer (e.g., disturbance) scales. Incorporating recently available remotely sensed datasets has the potential to improve species composition mapping by providing information to help predict species presence and relative abundance. Using USDA Forest Service Forest Inventory and Analysis plot data and the gradient nearest neighbor imputation modeling approach in eastern Washington, USA, we developed tree species composition and structure maps based on climate, topography, and two sources of remote sensing: height from digital aerial photogrammetry (DAP) of pushbroom aerial photography and Sentinel-2 multispectral satellite imagery. We tested the accuracy of these maps based on their capacity to predict species occurrence and proportional basal area for 10 coniferous tree species. In this study region, climate, topography, and location explained much of the species occurrence patterns, while both DAP and Sentinel-2 data were also important in predicting species proportional basal area. Overall accuracies for the best species occurrence model were 68–92% and R2 for the proportional basal area was 0.08–0.55. Comparisons of model accuracy with and without remote sensing indicated that adding some combination of DAP metrics and/or Sentinel-2 imagery increased R2 for the proportional basal area by 0.25–0.45, but had minor and sometimes negative effects on model skill and accuracy for species occurrence. Thus, species ranges appear most strongly constrained by environmental gradients, but abundance depends on forest structure, which is often determined by both environment and disturbance history. For example, proportional basal area responses to moisture limitation and canopy height varied by species, likely contributing to regional patterns of species dominance. However, local-scale examples indicated that remotely sensed forest structures representing recent disturbance patterns likely impacted tree community composition. Overall, our results suggest that characterizing geospatial patterns in tree communities across large landscapes may require not only environmental factors like climate and topography, but also information on forest structure provided by remote sensing. Maps of species composition are important for assessing a wide range of ecosystem functions in forested landscapes, including processes shaping community structure at broader (e.g., climate) and finer (e.g., disturbance) scales. Incorporating recently available remotely sensed datasets has the potential to improve species composition mapping by providing information to help predict species presence and relative abundance. Using USDA Forest Service Forest Inventory and Analysis plot data and the gradient nearest neighbor imputation modeling approach in eastern Washington, USA, we developed tree species composition and structure maps based on climate, topography, and two sources of remote sensing: height from digital aerial photogrammetry (DAP) of pushbroom aerial photography and Sentinel-2 multispectral satellite imagery. We tested the accuracy of these maps based on their capacity to predict species occurrence and proportional basal area for 10 coniferous tree species. In this study region, climate, topography, and location explained much of the species occurrence patterns, while both DAP and Sentinel-2 data were also important in predicting species proportional basal area. Overall accuracies for the best species occurrence model were 68–92% and R 2 for the proportional basal area was 0.08–0.55. Comparisons of model accuracy with and without remote sensing indicated that adding some combination of DAP metrics and/or Sentinel-2 imagery increased R 2 for the proportional basal area by 0.25–0.45, but had minor and sometimes negative effects on model skill and accuracy for species occurrence. Thus, species ranges appear most strongly constrained by environmental gradients, but abundance depends on forest structure, which is often determined by both environment and disturbance history. For example, proportional basal area responses to moisture limitation and canopy height varied by species, likely contributing to regional patterns of species dominance. However, local-scale examples indicated that remotely sensed forest structures representing recent disturbance patterns likely impacted tree community composition. Overall, our results suggest that characterizing geospatial patterns in tree communities across large landscapes may require not only environmental factors like climate and topography, but also information on forest structure provided by remote sensing. |
| Author | Bell, David M. Smith, Annie C. Gregory, Matthew J. Churchill, Derek J. |
| Author_xml | – sequence: 1 givenname: David M. surname: Bell fullname: Bell, David M. – sequence: 2 givenname: Matthew J. surname: Gregory fullname: Gregory, Matthew J. – sequence: 3 givenname: Derek J. surname: Churchill fullname: Churchill, Derek J. – sequence: 4 givenname: Annie C. surname: Smith fullname: Smith, Annie C. |
| BookMark | eNpNUk1v1DAQjVCRKKV3jpa4sotjZ5P4iCo-KhVxgApu1tgZb7xK7GBPQP2V_CUctkKcxvPmvTdj6T2vLkIMWFUva76XsldvnDvaveBC7FUr-rp9Ul2KVjS7XsnvF_-9n1XXOZ8456LrC8gvq9-fYFl8OLJfnkY2oj-OxCAMLC9oKcHEEs6RkGUMeeP5eZk8ZkYjEMPw06cYZgxnkYsJM7FMabW0JmSn6ANND8zGUEDwgVFCLO08r8HTNpiXmD35GNg2xXnBBLRRgneY4pofXTOLjiFkwhTYN8hjuYZieM3uixEO7AsVWX5RPXUwZbx-rFfV_ft3X28-7u4-f7i9eXu3s1IK2hmJCjsHQhqLqgY7dPLgAE1tbG-wdj2A7LpGcGWUHWTXKsVtj0aAU8Z08qq6PfsOEU56SX6G9KAjeP0XiOmoIZG3E2rb1Vb1YNEcRNMWfW-NaaHp2sbW3PHi9erstaT4Yy1f1ae4plDO11K0h6ZteL1t5GeWTTHnhO7f1prrLQV6S4HeUqDPKZB_ADEqsHk |
| Cites_doi | 10.1016/j.rse.2013.08.048 10.1890/ES11-00114.1 10.1016/j.ecolmodel.2011.03.033 10.1139/X10-024 10.1890/ES15-00203.1 10.1007/s10980-015-0218-0 10.1007/s10980-016-0414-6 10.1016/j.foreco.2021.119764 10.1016/j.rse.2016.08.013 10.1890/13-1015.1 10.2307/1938672 10.1890/ES11-00345.1 10.1016/j.foreco.2021.120004 10.1007/s10980-012-9703-x 10.1109/TGRS.1984.350619 10.3390/rs11080929 10.1016/j.foreco.2016.04.051 10.1016/j.jag.2021.102318 10.1002/ecs2.2108 10.1126/science.1128834 10.1016/j.rse.2016.01.017 10.1111/j.1654-1103.2010.01244.x 10.1016/j.rse.2013.12.013 10.1016/j.foreco.2020.118554 10.1016/j.rse.2015.11.024 10.1111/j.1365-2699.2009.02268.x 10.1139/cjfr-2017-0346 10.3390/rs14143433 10.1002/ecm.1241 10.1111/gcb.12026 10.1111/j.1365-2664.2006.01214.x 10.1002/eap.2433 10.1007/s00442-016-3792-1 10.3390/rs13214297 10.1016/j.foreco.2017.05.017 10.1038/s41586-022-04959-9 10.1007/s40725-019-00087-2 10.1007/978-0-387-77318-6 10.1016/j.tplants.2014.10.008 10.1139/X10-064 10.1002/ecs2.1472 10.3390/rs5126481 10.3390/rs11101197 10.1016/j.rse.2019.111535 10.1086/507711 10.3390/f6103704 10.1016/j.rse.2018.02.064 10.1890/10-0312.1 10.1016/0034-4257(80)90044-9 10.1139/cjfr-2013-0401 10.1139/x02-011 10.1016/j.rse.2018.11.012 10.3390/rs9070659 10.1016/j.foreco.2014.09.014 10.1016/j.foreco.2018.10.041 10.1016/j.rse.2019.01.019 10.1111/ele.13568 10.1111/j.2007.0906-7590.05171.x 10.1890/130066 10.1080/02827581.2012.686625 10.1111/ddi.12125 10.1016/j.foreco.2006.01.014 10.1002/ecs2.1424 10.1016/j.isprsjprs.2018.01.006 10.1126/science.aaa9933 10.1098/rstb.2015.0178 10.1016/j.rse.2007.03.032 10.1111/j.1365-2664.2007.01348.x 10.1080/01431160121472 10.3955/046.092.0104 10.3390/rs12040610 10.1111/j.1539-6924.2006.00707.x 10.1038/nclimate1693 10.1002/ecs2.2838 10.1109/JSTARS.2019.2938388 10.1016/0034-4257(92)90056-P 10.1016/j.rse.2009.12.018 10.1016/j.foreco.2012.02.002 10.1080/07038992.2016.1207484 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2 10.1186/1750-0680-8-1 10.1016/j.foreco.2017.11.004 10.1016/j.rse.2006.09.034 10.1890/1051-0761(2007)017[0018:IOEDAO]2.0.CO;2 10.1016/j.foreco.2015.03.016 10.2737/PNW-GTR-911 10.1111/j.2006.0906-7590.04596.x 10.1088/1748-9326/aa9d9e 10.1371/journal.pone.0156720 10.1002/rse2.7 10.1111/2041-210X.12180 10.1073/pnas.1617464114 10.1016/j.rse.2017.06.031 |
| ContentType | Journal Article |
| Copyright | 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ M0K PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY DOA |
| DOI | 10.3389/ffgc.2022.962816 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Agriculture Science Database Environmental Science Database (subscripiton) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Agricultural Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2624-893X |
| ExternalDocumentID | oai_doaj_org_article_c71c98aceb5246af98cbb6a4764c10f0 10_3389_ffgc_2022_962816 |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | 9T4 AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ M0K PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY |
| ID | FETCH-LOGICAL-c332t-b3e9e7fa23bce91acd735faeb1bc8be1f8aa3774209b9cd376990c8eb2af9bb73 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000893417600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2624-893X |
| IngestDate | Fri Oct 03 12:51:07 EDT 2025 Tue Oct 28 21:17:41 EDT 2025 Sat Nov 29 02:11:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c332t-b3e9e7fa23bce91acd735faeb1bc8be1f8aa3774209b9cd376990c8eb2af9bb73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3265464017?pq-origsite=%requestingapplication% |
| PQID | 3265464017 |
| PQPubID | 7426800 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c71c98aceb5246af98cbb6a4764c10f0 proquest_journals_3265464017 crossref_primary_10_3389_ffgc_2022_962816 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-22 |
| PublicationDateYYYYMMDD | 2022-11-22 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Frontiers in Forests and Global Change |
| PublicationYear | 2022 |
| Publisher | Frontiers Media SA Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media SA – name: Frontiers Media S.A |
| References | McGaughey (B62) 2016 Ter Braak (B86) 1986; 67 Beaudoin (B10) 2014; 44 Laurin (B56) 2016; 176 Walsh (B89) 1980; 9 Kennedy (B52) 2014; 12 Westerling (B92) 2016; 371 Ohmann (B69) 2014; 151 Fassnacht (B33) 2016; 186 Franklin (B37) 2013; 19 Shi (B82) 2019; 12 Thompson (B87) 2020; 23 Stohlgren (B83) 2006; 26 Elith (B32) 2006; 29 Gorelick (B41) 2017; 202 Strunk (B85) 2020; 237 Allen (B3) 2015; 6 Canham (B17) 2010; 91 Strunk (B84) 2022; 14 Wilson (B97) 2018; 137 Ohmann (B70) 2007; 17 Dobrowski (B29) 2013; 19 Hoscilo (B48) 2019; 11 Battles (B9) 2018 Malcolm (B60) 2021; 13 (B77) 2020 Kolb (B55) 2016; 380 Ohmann (B68) 2002; 32 DeMeo (B28) 2018; 92 Powell (B74) 2010; 114 Chastain (B19) 2019; 221 Millar (B65) 2015; 349 Burns (B15) 1990 Henderson (B46) 2019; 10 Mildrexler (B64) 2016; 173 Duveneck (B31) 2015; 347 Rehfeldt (B78) 2006; 167 Axelsson (B7) 2021; 100 Coops (B25) 2011; 222 Goodbody (B40) 2019; 5 Pasquarella (B72) 2018; 210 Davis (B27) 2015 Kane (B50); 40 Williams (B96) 2012; 3 Zhang (B101) 2018; 48 Crist (B26) 1984; 22 Prichard (B75) 2021; 31 Ohmann (B71) 2011; 22 Westerling (B93) 2006; 313 Wilson (B98) 2012; 271 Forzieri (B36) 2022; 7923 Puletti (B76) 2018; 42 Cohen (B22) 2004; 54 Cohen (B24) 2001; 22 Hall (B43) 2006; 225 Gesch (B38) 2007 Flood (B34) 2013; 5 Savage (B80) 2017; 399 Kennedy (B53) 2018; 13 Kleiber (B54) 2008 Aubin (B6) 2018; 9 Schoennagel (B81) 2017; 114 Haugo (B44) 2015; 335 Pollock (B73) 2014; 5 Brown (B14) 2017; 183 Dormann (B30) 2007; 30 McRoberts (B63) 2007; 110 Flood (B35) 2017; 9 Tomppo (B88) 2008; 112 Hessburg (B47) 2015; 30 Kane (B51); 40 Adams (B1) 2020; 12 Moritz (B66) 2012; 3 Loehman (B58) 2017; 32 Allouche (B4) 2006; 43 Clark (B21) 2017; 87 Lutz (B59) 2010; 37 White (B95) 2015; 6 Astola (B5) 2019; 223 Zimmermann (B102) 2007; 44 Bohlin (B13) 2012; 27 Gesch (B39) 2002; 68 Cansler (B18) 2022; 504 Littell (B57) 2011; 2 Grabska (B42) 2019; 11 Wang (B90) 2016; 11 Agne (B2) 2018; 409 (B91) 2020 Canham (B16) 2016; 7 Isaacson (B49) 2012; 27 North (B67) 2022; 507 Bell (B12) 2021; 479 Cohen (B23) 1992; 41 He (B45) 2015; 1 White (B94) 2016; 42 Riley (B79) 2016; 7 Barros (B8) 2019; 433 Wilson (B99) 2013; 8 McDowell (B61) 2015; 20 Bechtold (B11) 2005 Clark (B20) 2014; 24 Zald (B100) 2014; 143 |
| References_xml | – volume: 151 start-page: 3 year: 2014 ident: B69 article-title: Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping. publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.048 – volume: 2 start-page: art102 year: 2011 ident: B57 article-title: Managing uncertainty in climate-driven ecological models to inform adaptation to climate change. publication-title: Ecosphere doi: 10.1890/ES11-00114.1 – volume: 42 start-page: 32 year: 2018 ident: B76 article-title: Use of Sentinel-2 for forest classification in Mediterranean environments. publication-title: Ann. Silvic. Res. – volume: 222 start-page: 2119 year: 2011 ident: B25 article-title: Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America. publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2011.03.033 – volume: 40 start-page: 761 ident: B51 article-title: Comparisons between field- and LiDAR-based measures of stand structural complexity. publication-title: Canad. J. For. Res. doi: 10.1139/X10-024 – volume: 6 start-page: 129 year: 2015 ident: B3 article-title: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. publication-title: Ecosphere doi: 10.1890/ES15-00203.1 – year: 1990 ident: B15 article-title: Silvics of North America publication-title: Agriculture Handbook 654 – volume: 30 start-page: 1805 year: 2015 ident: B47 article-title: Restoring fire-prone Inland Pacific landscapes: seven core principles. publication-title: Landscape Ecol. doi: 10.1007/s10980-015-0218-0 – volume: 32 start-page: 1447 year: 2017 ident: B58 article-title: Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates. publication-title: Landscape Ecol. doi: 10.1007/s10980-016-0414-6 – volume: 504 start-page: 119764 year: 2022 ident: B18 article-title: Previous wildfires and management treatments moderate subsequent fire severity. publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2021.119764 – volume: 186 start-page: 64 year: 2016 ident: B33 article-title: Review of studies on tree species classification from remotely sensed data. publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.013 – volume: 24 start-page: 990 year: 2014 ident: B20 article-title: More than the sum of the parts: forest climate response from joint species distribution models. publication-title: Ecol. Appl. doi: 10.1890/13-1015.1 – volume: 67 start-page: 1167 year: 1986 ident: B86 article-title: Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. publication-title: Ecology doi: 10.2307/1938672 – volume: 3 start-page: 1 year: 2012 ident: B66 article-title: Climate change and disruptions to global fire activity. publication-title: Ecosphere doi: 10.1890/ES11-00345.1 – volume: 507 start-page: 120004 year: 2022 ident: B67 article-title: Operational resilience in western US frequent-fire forests. publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2021.120004 – volume: 27 start-page: 529 year: 2012 ident: B49 article-title: Detection of relative differences in phenology of forest species using Landsat and MODIS. publication-title: Landscape Ecol. doi: 10.1007/s10980-012-9703-x – volume: 22 start-page: 256 year: 1984 ident: B26 article-title: A physically-based transformation of Thematic Mapper data — The TM Tasseled Cap. publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.1984.350619 – volume: 11 start-page: 929 year: 2019 ident: B48 article-title: Mapping forest type and tree species on a regional scale using multi-temporal sentinel-2 data. publication-title: Remote Sens. doi: 10.3390/rs11080929 – volume: 380 start-page: 321 year: 2016 ident: B55 article-title: Observed and anticipated impacts of drought on forest insects and diseases in the United States. publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2016.04.051 – volume: 100 start-page: 102318 year: 2021 ident: B7 article-title: Tree species classification using Sentinel-2 imagery and Bayesian inference. publication-title: Int J Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2021.102318 – volume: 9 start-page: e02108 year: 2018 ident: B6 article-title: Tree vulnerability to climate change: improving exposure-based assessments using traits as indicators of sensitivity. publication-title: Ecosphere doi: 10.1002/ecs2.2108 – volume: 313 start-page: 940 year: 2006 ident: B93 article-title: Warming and earlier spring increase Western U.S. forest wildfire activity. publication-title: Science doi: 10.1126/science.1128834 – volume: 176 start-page: 163 year: 2016 ident: B56 article-title: Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.01.017 – volume: 22 start-page: 660 year: 2011 ident: B71 article-title: Mapping gradients of community composition with nearest-neighbour imputation: extending plot data for landscape analysis. publication-title: J. Veg. Sci. doi: 10.1111/j.1654-1103.2010.01244.x – volume: 143 start-page: 26 year: 2014 ident: B100 article-title: Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure. publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.12.013 – volume: 479 start-page: 118554 year: 2021 ident: B12 article-title: Quantifying regional trends in large live tree and snag availability in support of forest management. publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2020.118554 – volume: 173 start-page: 314 year: 2016 ident: B64 article-title: A forest vulnerability index based on drought and high temperatures. publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.024 – volume: 37 start-page: 936 year: 2010 ident: B59 article-title: Climatic water deficit, tree species ranges, and climate change in Yosemite National Park. publication-title: J. Biogeogra. doi: 10.1111/j.1365-2699.2009.02268.x – volume: 48 start-page: 461 year: 2018 ident: B101 article-title: Integrating forest inventory data and MODIS data to map species-level biomass in chinese boreal forests. publication-title: Canad. J. For. Res. doi: 10.1139/cjfr-2017-0346 – volume: 14 start-page: 3433 year: 2022 ident: B84 article-title: Pushbroom photogrammetric heights enhance state-level forest attribute mapping with landsat and environmental gradients. publication-title: Remote Sens. doi: 10.3390/rs14143433 – volume: 87 start-page: 34 year: 2017 ident: B21 article-title: Generalized joint attribute modeling for biodiversity analysis: median-zero, multivariate, multifarious data. publication-title: Ecol. Monogra. doi: 10.1002/ecm.1241 – volume: 19 start-page: 241 year: 2013 ident: B29 article-title: The climate velocity of the contiguous United States during the 20th century. publication-title: Glob. Change Biol. doi: 10.1111/gcb.12026 – volume: 43 start-page: 1223 year: 2006 ident: B4 article-title: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2006.01214.x – volume: 31 start-page: e02433 year: 2021 ident: B75 article-title: Adapting western North American forests to climate change and wildfires: 10 common questions. publication-title: Ecol. Appl. doi: 10.1002/eap.2433 – volume: 183 start-page: 643 year: 2017 ident: B14 article-title: Making sense of metacommunities: dispelling the mythology of a metacommunity typology. publication-title: Oecologia doi: 10.1007/s00442-016-3792-1 – volume: 13 start-page: 4297 year: 2021 ident: B60 article-title: Use of Sentinel-2 Data to Improve Multivariate Tree Species Composition in a Forest Resource Inventory. publication-title: Remote Sens. doi: 10.3390/rs13214297 – volume: 399 start-page: 9 year: 2017 ident: B80 article-title: Mapping post-disturbance forest landscape composition with Landsat satellite imagery. publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2017.05.017 – volume: 7923 start-page: 534 year: 2022 ident: B36 article-title: Emerging signals of declining forest resilience under climate change. publication-title: Nature doi: 10.1038/s41586-022-04959-9 – volume: 5 start-page: 55 year: 2019 ident: B40 article-title: Digital aerial photogrammetry for updating area-based forest inventories: A review of opportunities, challenges, and future directions. publication-title: Curr. For. Rep. doi: 10.1007/s40725-019-00087-2 – year: 2008 ident: B54 publication-title: Applied Econometrics with R. doi: 10.1007/978-0-387-77318-6 – volume: 20 start-page: 114 year: 2015 ident: B61 article-title: Global satellite monitoring of climate-induced vegetation disturbances. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.10.008 – year: 2018 ident: B9 article-title: Innovations in measuring and manageing forest carbon stocks in California publication-title: A report for California’s Fourth Climate Change Assessment. CCCA4-CNRA-2018-014 – volume: 40 start-page: 774 ident: B50 article-title: Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data. publication-title: Canad. J. For. Res. doi: 10.1139/X10-064 – volume: 7 start-page: e01472 year: 2016 ident: B79 article-title: Mapping forest vegetation for the western United States using modified random forests imputation of FIA forest plots. publication-title: Ecosphere doi: 10.1002/ecs2.1472 – volume: 5 start-page: 6481 year: 2013 ident: B34 article-title: Seasonal composite landsat TM/ETM+ images using the medoid (a Multi-Dimensional Median). publication-title: Remote Sens. doi: 10.3390/rs5126481 – volume: 11 start-page: 1197 year: 2019 ident: B42 article-title: Forest stand species mapping using the sentinel-2 time series. publication-title: Remote Sens. doi: 10.3390/rs11101197 – volume: 237 start-page: 111535 year: 2020 ident: B85 article-title: Evaluation of pushbroom DAP relative to frame camera DAP and lidar for forest modeling. publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111535 – volume: 167 start-page: 1123 year: 2006 ident: B78 article-title: Empirical analyses of plant-climate relationships for the Western United States. publication-title: Int. J. Plant Sci. doi: 10.1086/507711 – volume: 6 start-page: 3704 year: 2015 ident: B95 article-title: Comparing ALS and image-based point cloud metrics and modelled forest inventory attributes in a complex coastal forest environment. publication-title: Forests doi: 10.3390/f6103704 – volume: 210 start-page: 193 year: 2018 ident: B72 article-title: Improved mapping of forest type using spectral-temporal Landsat features. publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.064 – volume: 91 start-page: 3433 year: 2010 ident: B17 article-title: Frequency, not relative abundance, of temperate tree species varies along climate gradients in eastern North America. publication-title: Ecology doi: 10.1890/10-0312.1 – volume: 9 start-page: 11 year: 1980 ident: B89 article-title: Coniferous tree species mapping using LANDSAT data. publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(80)90044-9 – year: 2007 ident: B38 article-title: The national elevation dataset. Pages 99–118 publication-title: Digital elevational model technologies and applications: The DEM Users Manual – volume: 44 start-page: 521 year: 2014 ident: B10 article-title: Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery. publication-title: Canad. J. For. Res. doi: 10.1139/cjfr-2013-0401 – volume: 32 start-page: 725 year: 2002 ident: B68 article-title: Predictive mapping of forest composition and structure with direct gradient analysis and nearest- neighbor imputation in coastal Oregon, U.S.A. publication-title: Canad. J. For. Res. doi: 10.1139/x02-011 – volume: 221 start-page: 274 year: 2019 ident: B19 article-title: Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States. publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.012 – volume: 9 start-page: 659 year: 2017 ident: B35 article-title: Comparing Sentinel-2A and Landsat 7 and 8 Using Surface Reflectance over Australia. publication-title: Remote Sens. doi: 10.3390/rs9070659 – volume: 335 start-page: 37 year: 2015 ident: B44 article-title: A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA. publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2014.09.014 – volume: 433 start-page: 514 year: 2019 ident: B8 article-title: Improving long-term fuel treatment effectiveness in the National Forest System through quantitative prioritization. publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2018.10.041 – volume: 223 start-page: 257 year: 2019 ident: B5 article-title: Comparison of sentinel-2 and landsat 8 imagery for forest variable prediction in boreal region. publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.019 – volume: 23 start-page: 1314 year: 2020 ident: B87 article-title: A process-based metacommunity framework linking local and regional scale community ecology. publication-title: Ecol. Lett. doi: 10.1111/ele.13568 – volume: 30 start-page: 609 year: 2007 ident: B30 article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. publication-title: Ecography doi: 10.1111/j.2007.0906-7590.05171.x – volume: 12 start-page: 339 year: 2014 ident: B52 article-title: Bringing an ecological view of change to Landsat-based remote sensing. publication-title: Front. Ecol. Environ. doi: 10.1890/130066 – volume: 27 start-page: 692 year: 2012 ident: B13 article-title: Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. publication-title: Scand. J. For. Res. doi: 10.1080/02827581.2012.686625 – volume: 19 start-page: 1217 year: 2013 ident: B37 article-title: Species distribution models in conservation biogeography: developments and challenges. publication-title: Divers. Distrib. doi: 10.1111/ddi.12125 – volume: 225 start-page: 378 year: 2006 ident: B43 article-title: Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume. publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2006.01.014 – volume: 7 start-page: e01424 year: 2016 ident: B16 article-title: The demography of tree species response to climate: Seedling recruitment and survival. publication-title: Ecosphere doi: 10.1002/ecs2.1424 – volume: 137 start-page: 29 year: 2018 ident: B97 article-title: Harmonic regression of Landsat time series for modeling attributes from national forest inventory data. publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.01.006 – volume: 349 start-page: 823 year: 2015 ident: B65 article-title: Temperate forest health in an era of emerging megadisturbance. publication-title: Science doi: 10.1126/science.aaa9933 – volume: 371 start-page: 20150178 year: 2016 ident: B92 article-title: Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. publication-title: Philos. Trans. R. Soc. B: Biol. Sci. doi: 10.1098/rstb.2015.0178 – volume: 112 start-page: 1982 year: 2008 ident: B88 article-title: Combining national forest inventory field plots and remote sensing data for forest databases. publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.03.032 – volume: 44 start-page: 1057 year: 2007 ident: B102 article-title: Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2007.01348.x – volume: 22 start-page: 2279 year: 2001 ident: B24 article-title: Modelling forest cover attributes as continuous variables in a regional context with Thematic Mapper data. publication-title: Int. J. Remote Sens. doi: 10.1080/01431160121472 – volume: 92 start-page: 18 year: 2018 ident: B28 article-title: Expanding our understanding of forest structural restoration needs in the pacific northwest. publication-title: Northwest Sci. doi: 10.3955/046.092.0104 – volume: 12 start-page: 610 year: 2020 ident: B1 article-title: Mapping forest composition with landsat time series: An evaluation of seasonal composites and harmonic regression. publication-title: Remote Sensing doi: 10.3390/rs12040610 – volume: 26 start-page: 163 year: 2006 ident: B83 article-title: Risk analysis for biological hazards: What we need to know about invasive species. publication-title: Risk Anal. doi: 10.1111/j.1539-6924.2006.00707.x – volume: 3 start-page: 292 year: 2012 ident: B96 article-title: Temperature as a potent driver of regional forest drought stress and tree mortality. publication-title: Nat. Clim. Change doi: 10.1038/nclimate1693 – volume: 10 start-page: e02838 year: 2019 ident: B46 article-title: Vegetation mapping to support greater sage-grouse habitat monitoring and management: multi- or univariate approach? publication-title: Ecosphere doi: 10.1002/ecs2.2838 – volume: 12 start-page: 4038 year: 2019 ident: B82 article-title: Derivation of Tasseled Cap Transformation Coefficients for Sentinel-2 MSI At-Sensor Reflectance Data. publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2938388 – year: 2020 ident: B77 publication-title: R: A language and environment for statistical computing – volume: 41 start-page: 1 year: 1992 ident: B23 article-title: Estimating structural attributes of Douglas-fir/western hemlock forest stands from landsat and SPOT imagery. publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(92)90056-P – volume: 114 start-page: 1053 year: 2010 ident: B74 article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.12.018 – volume: 271 start-page: 182 year: 2012 ident: B98 article-title: A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2012.02.002 – volume: 42 start-page: 619 year: 2016 ident: B94 article-title: Remote sensing technologies for enhancing forest inventories: A review. publication-title: Canad. J. Remote Sens. doi: 10.1080/07038992.2016.1207484 – volume: 54 start-page: 535 year: 2004 ident: B22 article-title: Landsat’s role in ecological applications of remote sensing. publication-title: BioScience doi: 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2 – volume: 8 start-page: 1 year: 2013 ident: B99 article-title: Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage. publication-title: Carbon Balance Manag. doi: 10.1186/1750-0680-8-1 – volume: 409 start-page: 317 year: 2018 ident: B2 article-title: Interactions of predominant insects and diseases with climate change in Douglas-fir forests of western Oregon and Washington, U.S.A. publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2017.11.004 – volume: 110 start-page: 412 year: 2007 ident: B63 article-title: Remote sensing support for national forest inventories. publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.09.034 – volume: 17 start-page: 18 year: 2007 ident: B70 article-title: Influence of environment, disturbance, and ownership on forest vegetation of coastal Oregon. publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2007)017[0018:IOEDAO]2.0.CO;2 – start-page: 85 year: 2005 ident: B11 publication-title: The enhanced forest inventory and analysis program — national sampling design and estimation procedures. general tehcnical report SRS-GTR-80. – volume: 347 start-page: 107 year: 2015 ident: B31 article-title: An imputed forest composition map for New England screened by species range boundaries. publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2015.03.016 – start-page: 112 year: 2015 ident: B27 publication-title: Northwest Forest Plan–the first 20 years (1994-2013): status and trends of late-successional and old-growth forests. General Technical Report PNW-GTR-911. doi: 10.2737/PNW-GTR-911 – volume: 29 start-page: 129 year: 2006 ident: B32 article-title: Novel methods improve prediction of species’ distributions from occurrence data. publication-title: Ecography doi: 10.1111/j.2006.0906-7590.04596.x – volume: 13 start-page: 41001 year: 2018 ident: B53 article-title: An empirical, integrated forest biomass monitoring system. publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa9d9e – volume: 11 start-page: e0156720 year: 2016 ident: B90 article-title: Locally downscaled and spatially customizable climate data for historical and future periods for North America. publication-title: PLoS One doi: 10.1371/journal.pone.0156720 – year: 2016 ident: B62 publication-title: FUSION / LDV : Software for LIDAR Data Analysis and Visualization, FUSION – volume: 1 start-page: 4 year: 2015 ident: B45 article-title: Will remote sensing shape the next generation of species distribution models? publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.7 – volume: 5 start-page: 397 year: 2014 ident: B73 article-title: Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12180 – volume: 114 start-page: 4582 year: 2017 ident: B81 article-title: Adapt to more wildfire in western North American forests as climate changes. publication-title: Proc. Natl Acad. Sci. U. S. A. doi: 10.1073/pnas.1617464114 – volume: 202 start-page: 18 year: 2017 ident: B41 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone. publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 68 start-page: 5 year: 2002 ident: B39 article-title: The national elevation dataset. publication-title: Photogramm. Eng. Remote Sens. – year: 2020 ident: B91 publication-title: Forest health assessment and treatment framework (RCW 76.06.200). |
| SSID | ssj0002782620 |
| Score | 2.2011256 |
| Snippet | Maps of species composition are important for assessing a wide range of ecosystem functions in forested landscapes, including processes shaping community... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 962816 |
| SubjectTerms | Abundance Accuracy Aerial photography Climate change Community composition Community structure Composition Coniferous forests Coniferous trees digital aerial photogrammetry (DAP) Ecological function Environmental factors Environmental gradient Forest management forest mapping Forests Landsat satellites Mapping nearest neighbor imputation Photogrammetry Plant species Relative abundance Remote sensing Satellite imagery Satellite photography Sentinel-2 Species composition Temperate forests Topography tree community Vegetation mapping |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqqodeEKhULBQ0By5IpE2cD9tHQK24UHEAqTfLdsbtVpBFSYrUX9m_xIydrVbiwIVjYjux_Pzxxh6_EeJtrGIvJepCO2eKBlssTCyboq36rpW65_GVgk2oy0t9dWW-7oT6Yp-wLA-cG-4sqCoY7QL6Vjadi0YH7zvXqK4JVRmTtV4qs2NM3ebjNFZaz-eSZIWZsxivWbFQylPTSc3hzXfWoSTX_9dsnJaYi6fiycIN4UOu0zOxh8ORePjiWELhGnjHFG7STiaQ-Q_pjuRI-Uek5kaY2BWd8q3ZRxwnmG_cDDv32FIhoqj0Y8iqsXcjwu1mPcw_7iEwT-RwEcDH1PSY7o3MnPBz69gFnIrEs1legkuwW8zmblq-OsEmAocCwnGAxyBNw3vIvBYyr30uvl-cf_v0uViiMBShruVc-BoNquhk7QOayoVe1W10NMf7oD1WkVCuiUTK0ngTepqwaIELmix2Ast7VR-L_WEz4AsBlFAq1csKO9UErwhV1g9TTktHRMKvxLstJvZXFtuwZKQwfpbxs4yfzfitxEcG7TEfy2SnF9R57NJ57L86z0qcbCG3y9idLBHatunI7lQv_8c_XolDrjbfX5TyROwTwPhaHITf83oa36Ru-wd2M_uL priority: 102 providerName: Directory of Open Access Journals |
| Title | Mapping with height and spectral remote sensing implies that environment and forest structure jointly constrain tree community composition in temperate coniferous forests of eastern Washington, United States |
| URI | https://www.proquest.com/docview/3265464017 https://doaj.org/article/c71c98aceb5246af98cbb6a4764c10f0 |
| Volume | 5 |
| WOSCitedRecordID | wos000893417600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2624-893X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002782620 issn: 2624-893X databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-893X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002782620 issn: 2624-893X databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 2624-893X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002782620 issn: 2624-893X databaseCode: M0K dateStart: 20180701 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database (subscripiton) customDbUrl: eissn: 2624-893X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002782620 issn: 2624-893X databaseCode: PATMY dateStart: 20180701 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2624-893X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002782620 issn: 2624-893X databaseCode: BENPR dateStart: 20180701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2624-893X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002782620 issn: 2624-893X databaseCode: PIMPY dateStart: 20180701 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg5cClgACxUKo5cEEiNHE-bJ8QRVuB0K5WCKRysmzH3i6CpE1SJC78Rf4SM052qYTEhUukZJzEkp9nxuPxG8aehSzUnHuZSGNUUvjSJyqkRVJmdVVyWdP8isUmxHIpz87Uagq49VNa5VYnRkVdt45i5MfoZpRFhasB8eriMqGqUbS7OpXQuMn2iakMcb5_Ml-uPuyiLBwNYMXTcX8SV2PqOIQ1MRdy_lJVXFKZ82v2KNL2_6WVo6k5vfO_nbzLDiYnE16PqLjHbvjmPvu1MMTFsAYKvcJ5DImCaWqIhy07bN95HDcPPeW0Y7sNJZv7HoZzM8C1A3HxJfR1sVsw0s9edR6-tJtm-PoDHDmcVHcCaL8bb-MBlIEE37YZYkBSjw478VTQG5Rf017101d7aANQTSHfNbCr9tS8gNFBhtFBfsA-nc4_vnmbTOUcEpfnfEhs7pUXwfDcOq8y42qRl8GgsbBOWp8FhEuO3ihPlVWuRs2HltJJXPqboKwV-UO217SNf8QABakQNc98JQpnhXGeiMiEkdygR2Jn7Pl2UPXFyNqhcbVDANAEAE0A0CMAZuyERn3Xjvi244O2W-tp-monMqck_saWvKiwP9JZW5lCVIXL0pDO2OEWEHpSAr3-g4bH_xY_YbepQ3TEkfNDtodD55-yW-77sOm7ownTRzFcgNdF-p6uP-coWb1brD7_BpgWDto |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFgkuPASoCwXmAAckQhPnYfuAEK-qq3ZXPRSpnILt2NtFkJQkBfVP8Vf4S8zksVRC4tYDx8R2YtmfxzP2zHyMPfGRLzh3MpBaqyBxqQuUD5MgjYos5bKg9dWRTYjFQh4fq8MN9nOMhSG3ylEmdoK6qCydke-gmpEmGVoD4tXpt4BYo-h2daTQ6GGx785_oMnWvJy9w_l9yvnu-6O3e8HAKhDYOOZtYGKnnPCax8Y6FWlbiDj1GmWWsdK4yGOvY1SKeKiMsgUuQBTYVqIFqr0yRsT43StsMyGwT9jm4Wx--HF9qsNxw8142N-HovWndrxfUqZEzl-ojEuiVb-w_3U0AX_tAt3WtnvzfxuUW-zGoETD6x71t9mGK--wX3NNuSaWQEfLcNId-YIuC-iCSWusXzvEpYOGfPax3oqc6V0D7Ylu4ULAX9cIdXkcBujT657VDj5Xq7L9cg6WFGri1QC6z8fHLsCmpYKvowccUKlDg4TycFAL8h-qzprhqw1UHogzydUlrNmsyufQGwDQGwB32YdLGcN7bFJWpdtigAWhEAWPXCYSa4S2jhKtCS25Ro3LTNmzEUT5aZ-VJEdrjgCXE-ByAlzeA27K3hDK1vUon3j3oqqX-SCecisiqyT-xqQ8ybA_0hqT6URkiY1CH07Z9gjAfBByTf4Hfff_XfyYXds7mh_kB7PF_gN2nTpH4Zycb7MJTqN7yK7a7-2qqR8N6wnYp8tG6290gWt0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+with+height+and+spectral+remote+sensing+implies+that+environment+and+forest+structure+jointly+constrain+tree+community+composition+in+temperate+coniferous+forests+of+eastern+Washington%2C+United+States&rft.jtitle=Frontiers+in+Forests+and+Global+Change&rft.au=Bell%2C+David+M.&rft.au=Gregory%2C+Matthew+J.&rft.au=Churchill%2C+Derek+J.&rft.au=Smith%2C+Annie+C.&rft.date=2022-11-22&rft.issn=2624-893X&rft.eissn=2624-893X&rft.volume=5&rft_id=info:doi/10.3389%2Fffgc.2022.962816&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_ffgc_2022_962816 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-893X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-893X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-893X&client=summon |