Mixed boundary value problem for p-harmonic functions in an infinite cylinder

We study a mixed boundary value problem for the p-Laplace equation Δpu=0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on a part of the boundary and zero Neumann boundary data on the rest. Existence of weak solutions to the mixed problem is proved both for Sobole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis Jg. 202; S. 112134
Hauptverfasser: Björn, Jana, Mwasa, Abubakar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2021
Schlagworte:
ISSN:0362-546X, 1873-5215, 1873-5215
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a mixed boundary value problem for the p-Laplace equation Δpu=0 in an open infinite circular half-cylinder with prescribed Dirichlet boundary data on a part of the boundary and zero Neumann boundary data on the rest. Existence of weak solutions to the mixed problem is proved both for Sobolev and for continuous data on the Dirichlet part of the boundary. We also obtain a boundary regularity result for the point at infinity in terms of a variational capacity adapted to the cylinder.
ISSN:0362-546X
1873-5215
1873-5215
DOI:10.1016/j.na.2020.112134