Boundary-Element Methods for Field Reconstruction in Accelerator Magnets

Magnetic fields in the aperture of particle accelerator magnets can be represented by boundary potentials, exploiting Kirchhoff's integral equation. Depending on the formulation, magnetic measurement data can be represented by the discrete approximations of Dirichlet or Neumann data at the doma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics Jg. 56; H. 3; S. 1 - 4
Hauptverfasser: Liebsch, Melvin, Russenschuck, Stephan, Kurz, Stefan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9464, 1941-0069
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic fields in the aperture of particle accelerator magnets can be represented by boundary potentials, exploiting Kirchhoff's integral equation. Depending on the formulation, magnetic measurement data can be represented by the discrete approximations of Dirichlet or Neumann data at the domain boundary. The missing Cauchy data, which are related to the tangential-field components, can then be computed by the boundary-element method (BEM) in a numerical post-processing step. Evaluating the integral equation for field reconstruction inside the domain of interest will reduce measurement uncertainties and approximation errors due to the smoothing property of Green's kernel. Applications to the reconstruction of 2-D fields (integrated quantities from stretched-wire measurements) and 3-D fields (local quantities from measurements with moving induction-coil magnetometers) are presented.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2019.2952092