Ternary Sparse Matrix Representation for Volumetric Mesh Subdivision and Processing on GPUs

In this paper, we present a novel volumetric mesh representation suited for parallel computing on modern GPU architectures. The data structure is based on a compact, ternary sparse matrix storage of boundary operators. Boundary operators correspond to the first‐order top‐down relations of k‐faces to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 36; H. 5; S. 59 - 69
Hauptverfasser: Mueller‐Roemer, J. S., Altenhofen, C., Stork, A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.08.2017
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a novel volumetric mesh representation suited for parallel computing on modern GPU architectures. The data structure is based on a compact, ternary sparse matrix storage of boundary operators. Boundary operators correspond to the first‐order top‐down relations of k‐faces to their (k − 1)‐face facets. The compact, ternary matrix storage format is based on compressed sparse row matrices with signed indices and allows for efficient parallel computation of indirect and bottom‐up relations. This representation is then used in the implementation of several parallel volumetric mesh algorithms including Laplacian smoothing and volumetric Catmull‐Clark subdivision. We compare these algorithms with their counterparts based on OpenVolumeMesh and achieve speedups from 3× to 531×, for sufficiently large meshes, while reducing memory consumption by up to 36%.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.13245