Fast and Robust QEF Minimization using Probabilistic Quadrics

Error quadrics are a fundamental and powerful building block in many geometry processing algorithms. However, finding the minimizer of a given quadric is in many cases not robust and requires a singular value decomposition or some ad‐hoc regularization. While classical error quadrics measure the squ...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 39; no. 2; pp. 325 - 334
Main Authors: Trettner, P., Kobbelt, L.
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.05.2020
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Error quadrics are a fundamental and powerful building block in many geometry processing algorithms. However, finding the minimizer of a given quadric is in many cases not robust and requires a singular value decomposition or some ad‐hoc regularization. While classical error quadrics measure the squared deviation from a set of ground truth planes or polygons, we treat the input data as genuinely uncertain information and embed error quadrics in a probabilistic setting (“probabilistic quadrics”) where the optimal point minimizes the expected squared error. We derive closed form solutions for the popular plane and triangle quadrics subject to (spatially varying, anisotropic) Gaussian noise. Probabilistic quadrics can be minimized robustly by solving a simple linear system — 50× faster than SVD. We show that probabilistic quadrics have superior properties in tasks like decimation and isosurface extraction since they favor more uniform triangulations and are more tolerant to noise while still maintaining feature sensitivity. A broad spectrum of applications can directly benefit from our new quadrics as a drop‐in replacement which we demonstrate with mesh smoothing via filtered quadrics and non‐linear subdivision surfaces.
AbstractList Error quadrics are a fundamental and powerful building block in many geometry processing algorithms. However, finding the minimizer of a given quadric is in many cases not robust and requires a singular value decomposition or some ad‐hoc regularization. While classical error quadrics measure the squared deviation from a set of ground truth planes or polygons, we treat the input data as genuinely uncertain information and embed error quadrics in a probabilistic setting (“probabilistic quadrics”) where the optimal point minimizes the expected squared error. We derive closed form solutions for the popular plane and triangle quadrics subject to (spatially varying, anisotropic) Gaussian noise. Probabilistic quadrics can be minimized robustly by solving a simple linear system — 50× faster than SVD. We show that probabilistic quadrics have superior properties in tasks like decimation and isosurface extraction since they favor more uniform triangulations and are more tolerant to noise while still maintaining feature sensitivity. A broad spectrum of applications can directly benefit from our new quadrics as a drop‐in replacement which we demonstrate with mesh smoothing via filtered quadrics and non‐linear subdivision surfaces.
Error quadrics are a fundamental and powerful building block in many geometry processing algorithms. However, finding the minimizer of a given quadric is in many cases not robust and requires a singular value decomposition or some ad‐hoc regularization. While classical error quadrics measure the squared deviation from a set of ground truth planes or polygons, we treat the input data as genuinely uncertain information and embed error quadrics in a probabilistic setting (“probabilistic quadrics”) where the optimal point minimizes the expected squared error. We derive closed form solutions for the popular plane and triangle quadrics subject to (spatially varying, anisotropic) Gaussian noise. Probabilistic quadrics can be minimized robustly by solving a simple linear system — 50× faster than SVD. We show that probabilistic quadrics have superior properties in tasks like decimation and isosurface extraction since they favor more uniform triangulations and are more tolerant to noise while still maintaining feature sensitivity. A broad spectrum of applications can directly benefit from our new quadrics as a drop‐in replacement which we demonstrate with mesh smoothing via filtered quadrics and non‐linear subdivision surfaces.
Author Kobbelt, L.
Trettner, P.
Author_xml – sequence: 1
  givenname: P.
  orcidid: 0000-0003-3706-2259
  surname: Trettner
  fullname: Trettner, P.
  email: trettner@cs.rwth-aachen.de
  organization: RWTH Aachen University
– sequence: 2
  givenname: L.
  orcidid: 0000-0002-7880-9470
  surname: Kobbelt
  fullname: Kobbelt, L.
  email: kobbelt@cs.rwth-aachen.de
  organization: RWTH Aachen University
BookMark eNp1kL1OwzAUhS1UJNrCwBtEYmJI6387AwOqmoJUBEUwW45jV67SpNiJUHl6QtsJwV3uGb5zru4ZgUHd1BaAawQnqJ-pWbsJIhkhZ2CIKBep5CwbgCFEvRaQsQswinEDIaSCsyG4y3VsE12XyWtTdL1czfPkydd-679065s66aKv18lLaApd-MrH1ptk1ekyeBMvwbnTVbRXpz0G7_n8bfaQLp8Xj7P7ZWoIwSRlBS-oZEJyIkVWUIKN1FYYJhg1JGPQCMsKSW2JiXCiNARR6xiXjmPJnSZjcHPM3YXmo7OxVZumC3V_UmGKccYRzHBPTY-UCU2MwTplfHt4og3aVwpB9dOR6jtSh456x-0vxy74rQ77P9lT-qev7P5_UM0W-dHxDYy2dho
CitedBy_id crossref_primary_10_1109_TGRS_2024_3457796
crossref_primary_10_1145_3476576_3476636
crossref_primary_10_1111_cgf_14380
crossref_primary_10_1109_TRO_2025_3582812
crossref_primary_10_1111_cgf_70201
crossref_primary_10_1145_3618388
crossref_primary_10_1145_3550454_3555487
crossref_primary_10_1145_3731202
crossref_primary_10_3390_polym14040762
crossref_primary_10_1111_cgf_70184
crossref_primary_10_1145_3450626_3459768
crossref_primary_10_1145_3731143
crossref_primary_10_3390_app131810199
Cites_doi 10.1109/VISUAL.1999.809869
10.1145/2898350
10.1145/566654.566586
10.1111/cgf.13597
10.1111/cgf.12531
10.1145/344779.344912
10.1109/ICACTE.2008.92
10.1145/258734.258849
10.1145/383259.383265
10.1145/1061347.1061350
10.1145/3306346.3323026
10.1016/j.cad.2012.04.005
10.1109/SIBGRAPI.2010.41
ContentType Journal Article
Copyright 2020 The Author(s) Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2020 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2020 The Author(s) Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2020 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.13933
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 334
ExternalDocumentID 10_1111_cgf_13933
CGF13933
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3323-5b6b4857863879b432c8ae7c5754c3950c7e5b84ed237f7dc314ef568f6286fa3
IEDL.DBID DRFUL
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548709600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 30 05:10:03 EST 2025
Tue Nov 18 22:39:04 EST 2025
Sat Nov 29 03:41:18 EST 2025
Wed Jan 22 16:34:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3323-5b6b4857863879b432c8ae7c5754c3950c7e5b84ed237f7dc314ef568f6286fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7880-9470
0000-0003-3706-2259
OpenAccessLink https://doi.org/10.1111/cgf.13933
PQID 2422961092
PQPubID 30877
PageCount 10
ParticipantIDs proquest_journals_2422961092
crossref_citationtrail_10_1111_cgf_13933
crossref_primary_10_1111_cgf_13933
wiley_primary_10_1111_cgf_13933_CGF13933
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2001
2017; 36
2000
2013; 32
2010
2002; 21
1998
1997
2019; 38
2008
2016
2015
2004
2014
1992; 87
2012; 44
2016; 35
2005; 24
1999
e_1_2_9_10_2
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_12_2
e_1_2_9_23_2
e_1_2_9_11_2
Mathai A. (e_1_2_9_14_2) 1992
e_1_2_9_22_2
e_1_2_9_7_2
Thiery J.‐M. (e_1_2_9_19_2) 2013; 32
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
Calderon S. (e_1_2_9_2_2) 2017; 36
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_13_2
e_1_2_9_16_2
e_1_2_9_15_2
e_1_2_9_18_2
e_1_2_9_17_2
References_xml – volume: 24
  start-page: 209
  issue: 2
  year: 2005
  end-page: 239
  article-title: Quadric‐based simplification in any dimension
  publication-title: ACM Trans. Graph.
– volume: 38
  start-page: 663
  issue: 1
  year: 2019
  end-page: 677
  article-title: Filtered quadrics for high‐speed geometry smoothing and clustering
  publication-title: Computer Graphics Forum
– volume: 44
  start-page: 1072
  issue: 11
  year: 2012
  end-page: 1082
  article-title: Variational mesh segmentation via quadric surface fitting
  publication-title: Comput. Aided Des.
– volume: 36
  issue: 5
  year: 2017
  article-title: Bounding proxies for shape approximation
  publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH 2017)
– start-page: 528
  year: 2008
  end-page: 532
– volume: 35
  start-page: 30:1
  issue: 3
  year: 2016
  end-page: 30:13
  article-title: Animated mesh approximation with sphere‐meshes
  publication-title: ACM Trans. Graph.
– volume: 87
  issue: 12
  year: 1992
– volume: 32
  issue: 6
  year: 2013
  article-title: Sphere‐meshes: Shape approximation using spherical quadric error metrics
  publication-title: ACM Transaction on Graphics (Proc. SIGGRAPH Asia 2013)
– volume: 38
  start-page: 35:1
  issue: 4
  year: 2019
  end-page: 35:11
  article-title: Gaussianproduct subdivision surfaces
  publication-title: ACM Trans. Graph.
– start-page: 57
  year: 2001
  end-page: 66
– start-page: 70
  year: 2004
  end-page: 76
– start-page: 209
  year: 1997
  end-page: 216
– volume: 21
  start-page: 339
  issue: 3
  year: 2002
  end-page: 346
  article-title: Dual contouring of hermite data
  publication-title: ACM Trans. Graph.
– start-page: 247
  year: 2010
  end-page: 254
– start-page: 259
  year: 2000
  end-page: 262
– year: 2016
– year: 2014
– start-page: 279
  year: 1998
  end-page: 286
– year: 2015
– year: 2010
– year: 1999
– ident: e_1_2_9_6_2
  doi: 10.1109/VISUAL.1999.809869
– ident: e_1_2_9_11_2
– ident: e_1_2_9_20_2
  doi: 10.1145/2898350
– ident: e_1_2_9_8_2
  doi: 10.1145/566654.566586
– ident: e_1_2_9_12_2
  doi: 10.1111/cgf.13597
– ident: e_1_2_9_17_2
  doi: 10.1111/cgf.12531
– ident: e_1_2_9_7_2
– ident: e_1_2_9_4_2
– ident: e_1_2_9_10_2
  doi: 10.1145/344779.344912
– ident: e_1_2_9_13_2
  doi: 10.1109/ICACTE.2008.92
– ident: e_1_2_9_3_2
  doi: 10.1145/258734.258849
– volume: 32
  issue: 6
  year: 2013
  ident: e_1_2_9_19_2
  article-title: Sphere‐meshes: Shape approximation using spherical quadric error metrics
  publication-title: ACM Transaction on Graphics (Proc. SIGGRAPH Asia 2013)
– ident: e_1_2_9_15_2
– ident: e_1_2_9_18_2
– ident: e_1_2_9_23_2
– volume: 36
  issue: 5
  year: 2017
  ident: e_1_2_9_2_2
  article-title: Bounding proxies for shape approximation
  publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH 2017)
– ident: e_1_2_9_9_2
  doi: 10.1145/383259.383265
– ident: e_1_2_9_5_2
  doi: 10.1145/1061347.1061350
– ident: e_1_2_9_16_2
  doi: 10.1145/3306346.3323026
– volume-title: Quadratic Forms in Random Variables: Theory and Applications
  year: 1992
  ident: e_1_2_9_14_2
– ident: e_1_2_9_22_2
  doi: 10.1016/j.cad.2012.04.005
– ident: e_1_2_9_21_2
  doi: 10.1109/SIBGRAPI.2010.41
SSID ssj0004765
Score 2.4041169
Snippet Error quadrics are a fundamental and powerful building block in many geometry processing algorithms. However, finding the minimizer of a given quadric is in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 325
SubjectTerms Algorithms
CCS Concepts
Computing methodologies → Mesh models; Mesh geometry models
Error analysis
Ground truth
Normal distribution
Optimization
Random noise
Regularization
Robustness
Singular value decomposition
Triangles
Title Fast and Robust QEF Minimization using Probabilistic Quadrics
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13933
https://www.proquest.com/docview/2422961092
Volume 39
WOSCitedRecordID wos000548709600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5q60EPvsVqlUU8eFlp89gkiAepXT2o2GKhtyXJZktBt9Jt_f0m2922goLgLYfZ1-x8yZcw8w3ABeemxbAwPjIk8YlSwhdaBr4iLakoahppSN5sgj0_88FAvFTguqyFmetDLA7cHDLy-doBXKpsBeR6mFxZ-oLxGtSQjVtShdpdL-w_LssiWUBLaW8nGlMIC7lEnsXF35ejJcdcZar5UhNu_-sld2CrYJje7TwkdqFi0j3YXNEd3IebUGZTT6ax1xurmR12O6H3NEpH70VVpufS4Yfey8Si3WXPOjFnrzuTsZ01swPoh53X9oNf9FHwNcYI-1QFinALTYs1JhTBSHNpmLZMjWgsaFMzQxUnJkaYJSzWuEVMQgOeuLrVROJDqKbj1ByBJ3WCqML2kzgmhnGJqDYINWODAqyFrsNl6c5IFyLjrtfFW1RuNqxHotwjdThfmH7MlTV-MmqU_yQqwJVFllUg4WTikX1c7v3fbxC178N8cPx30xPYQG5Xnac1NqA6nczMKazrz-kom5wVUfYFjf3TSg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60CurBt_g2iAcvK20emyzoQaprxba00oK3JclmS0FX6cPfb7LdbSsoCN5ymH3Nzpd8CTPfAFwIYSqcBMbDhiYeVSrwAi19T9GKVAyXjTQ0azbBm03x8hK0FuC6qIWZ6ENMD9wcMrL52gHcHUjPoVz3kivLXwhZhCVqw4iVYOnuOezWZ3WR3GeFtrdTjcmVhVwmz_Ti7-vRjGTOU9VsrQk3_veWm7Cec0x0OwmKLVgw6TaszSkP7sBNKIcjJNMYPb-rsR2270PU6Kf9t7wuE7mE-B5qDSzeXf6sk3NG7bGM7bw53IVueN-p1ry8k4KnCcHEY8pXVFhwWjfxQFGCtZCGa8vVqCYBK2tumBLUxJjwhMeaVKhJmC8SV7maSLIHpfQ9NfuApE4wU8R-kiDUcCEx0wbjcmywT3SgD-Cy8Gekc5lx1-3iNSq2G9YjUeaRAzifmn5MtDV-MjoufkqUw2sYWV6BAycUj-3jMvf_foOo-hBmg8O_m57BSq3TqEf1x-bTEaxit8fOkhyPoTQajM0JLOvPUX84OM1D7gtE0Nc6
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH5MJ6IHf4vTqUU8eKls-dEkoAdxVkUdUxS8lSRNZaDdWDf_fpOu3SYoCN5yeG3S13zJl_De9wCOOTdNhoXxkSGJT5QSvtAy8BVpSkVRw0hD8mITrN3mr6-iU4GzMhdmrA8xuXBzyMjXawdw04-TGZTrt-TU8heM56BKqAgsLKutp_DlfpoXyQJaans71ZhCWchF8kwe_r4fTUnmLFXN95pw9X-jXIOVgmN6F-NJsQ4Vk27A8ozy4CachzIbejKNvaeeGtnm41XoPXTT7keRl-m5gPg3rzOweHfxs07O2Xscydium9kWvIRXz5c3flFJwdcYI-xTFSjCLTgt2phQBCPNpWHacjWisaANzQxVnJgYYZawWOMmMQkNeOIyVxOJt2E-7aVmBzypE0QVtp_EMTGMS0S1QagRGxRgLXQNTkp_RrqQGXfVLt6j8rhhPRLlHqnB0cS0P9bW-MmoXv6UqIBXFllegYQTike2u9z9v78gurwO88bu300PYbHTCqP72_bdHiwhd8TOYxzrMD8cjMw-LOjPYTcbHBQz7gsK8ta1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Robust+QEF+Minimization+using+Probabilistic+Quadrics&rft.jtitle=Computer+graphics+forum&rft.au=Trettner%2C+P.&rft.au=Kobbelt%2C+L.&rft.date=2020-05-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=39&rft.issue=2&rft.spage=325&rft.epage=334&rft_id=info:doi/10.1111%2Fcgf.13933&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_13933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon