Clustering and percolation on superpositions of Bernoulli random graphs
A simple but powerful network model with n$$ n $$ nodes and m$$ m $$ partly overlapping layers is generated as an overlay of independent random graphs G1,…,Gm$$ {G}_1,\dots, {G}_m $$ with variable sizes and densities. The model is parameterized by a joint distribution Pn$$ {P}_n $$ of layer sizes an...
Uložené v:
| Vydané v: | Random structures & algorithms Ročník 63; číslo 2; s. 283 - 342 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
John Wiley & Sons, Inc
01.09.2023
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 1042-9832, 1098-2418 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A simple but powerful network model with n$$ n $$ nodes and m$$ m $$ partly overlapping layers is generated as an overlay of independent random graphs G1,…,Gm$$ {G}_1,\dots, {G}_m $$ with variable sizes and densities. The model is parameterized by a joint distribution Pn$$ {P}_n $$ of layer sizes and densities. When m$$ m $$ grows linearly and Pn→P$$ {P}_n\to P $$ as n→∞$$ n\to \infty $$, the model generates sparse random graphs with a rich statistical structure, admitting a nonvanishing clustering coefficient together with a limiting degree distribution and clustering spectrum with tunable power‐law exponents. Remarkably, the model admits parameter regimes in which bond percolation exhibits two phase transitions: the first related to the emergence of a giant connected component, and the second to the appearance of gigantic single‐layer components. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1042-9832 1098-2418 |
| DOI: | 10.1002/rsa.21140 |