A polyhedral approach for a constrained quadratic 0–1 problem
In this paper we consider the problem of optimizing a quadratic pseudo-Boolean function subject to the cardinality constraint ∑ 1 ⩽ i ⩽ n x i = k with a polyhedral method. More precisely we propose a study of the convex hull of feasible points included in the Padberg's Boolean quadric polytope...
Uloženo v:
| Vydáno v: | Discrete Applied Mathematics Ročník 149; číslo 1; s. 87 - 100 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.08.2005
Elsevier |
| Témata: | |
| ISSN: | 0166-218X, 1872-6771 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we consider the problem of optimizing a quadratic pseudo-Boolean function subject to the cardinality constraint
∑
1
⩽
i
⩽
n
x
i
=
k
with a polyhedral method. More precisely we propose a study of the convex hull of feasible points included in the Padberg's Boolean quadric polytope and satisfying the cardinality constraint. Specifically, we investigate the connection with the Boolean quadric polytope and study a facet family. The relationship with two other polytopes of the literature is also explored. |
|---|---|
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/j.dam.2004.02.020 |