A polyhedral approach for a constrained quadratic 0–1 problem

In this paper we consider the problem of optimizing a quadratic pseudo-Boolean function subject to the cardinality constraint ∑ 1 ⩽ i ⩽ n x i = k with a polyhedral method. More precisely we propose a study of the convex hull of feasible points included in the Padberg's Boolean quadric polytope...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Applied Mathematics Ročník 149; číslo 1; s. 87 - 100
Hlavní autoři: Faye, Alain, Trinh, Quoc-an
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2005
Elsevier
Témata:
ISSN:0166-218X, 1872-6771
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we consider the problem of optimizing a quadratic pseudo-Boolean function subject to the cardinality constraint ∑ 1 ⩽ i ⩽ n x i = k with a polyhedral method. More precisely we propose a study of the convex hull of feasible points included in the Padberg's Boolean quadric polytope and satisfying the cardinality constraint. Specifically, we investigate the connection with the Boolean quadric polytope and study a facet family. The relationship with two other polytopes of the literature is also explored.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2004.02.020