A Self-Organizing Multiobjective Evolutionary Algorithm
Under mild conditions, the Pareto front (Pareto set) of a continuous m-objective optimization problem forms an (m - 1)-dimensional piecewise continuous manifold. Based on this property, this paper proposes a self-organizing multiobjective evolutionary algorithm. At each generation, a self-organizing...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 20; H. 5; S. 792 - 806 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.10.2016
|
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Under mild conditions, the Pareto front (Pareto set) of a continuous m-objective optimization problem forms an (m - 1)-dimensional piecewise continuous manifold. Based on this property, this paper proposes a self-organizing multiobjective evolutionary algorithm. At each generation, a self-organizing mapping method with (m - 1) latent variables is applied to establish the neighborhood relationship among current solutions. A solution is only allowed to mate with its neighboring solutions to generate a new solution. To reduce the computational overhead, the self-organizing training step and the evolution step are conducted in an alternative manner. In other words, the self-organizing training is performed only one single step at each generation. The proposed algorithm has been applied to a number of test instances and compared with some state-of-the-art multiobjective evolutionary methods. The results have demonstrated its advantages over other approaches. |
|---|---|
| ISSN: | 1089-778X 1941-0026 |
| DOI: | 10.1109/TEVC.2016.2521868 |