Characteristics of invariant weights related to code equivalence over rings

The Equivalence Theorem states that, for a given weight on an alphabet, every isometry between linear codes extends to a monomial transformation of the entire space. This theorem has been proved for several weights and alphabets, including the original MacWilliams’ Equivalence Theorem for the Hammin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Designs, codes, and cryptography Ročník 66; číslo 1-3; s. 145 - 156
Hlavní autori: Greferath, Marcus, Mc Fadden, Cathy, Zumbrägel, Jens
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.01.2013
Predmet:
ISSN:0925-1022, 1573-7586
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The Equivalence Theorem states that, for a given weight on an alphabet, every isometry between linear codes extends to a monomial transformation of the entire space. This theorem has been proved for several weights and alphabets, including the original MacWilliams’ Equivalence Theorem for the Hamming weight on codes over finite fields. The question remains: What conditions must a weight satisfy so that the Extension Theorem will hold? In this paper we provide an algebraic framework for determining such conditions, generalising the approach taken in Greferath and Honold (Proceedings of the Tenth International Workshop in Algebraic and Combinatorial Coding Theory (ACCT-10), pp. 106–111. Zvenigorod, Russia, 2006 ).
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-012-9671-9