Establishment of the Model for Estimating the Organic Carbon Content of Forest Topsoil Based on Remote Sensing Data

Understanding the organic carbon content of forest soil will aid in studying the spatial distribution pattern of regional soil organic carbon (SOC) storage. Monitoring and researching forest SOC content is a crucial task that usually involves outdoor sampling and indoor experiments, which takes up m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; pp. 162062 - 162074
Main Authors: Zheng, Shulin, Zhang, Jie, Song, Mingyue, Zhou, Pei, Guo, Xiaoyu, Yue, Haijun
Format: Journal Article
Language:English
Published: IEEE 2024
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Understanding the organic carbon content of forest soil will aid in studying the spatial distribution pattern of regional soil organic carbon (SOC) storage. Monitoring and researching forest SOC content is a crucial task that usually involves outdoor sampling and indoor experiments, which takes up much time. To improving its work efficiency, estimation models for topsoil organic carbon content are established. Correlation analysis was employed to evaluate the impact of factors (including elevation, slope, slope orientation, curvature, topographic wetness index, normalized difference vegetation index, enhanced vegetation index, and total nitrogen) on SOC content. Models for forest SOC content were constructed by machine learning algorithms using the above factors to enhance the efficiency of carbon storage estimation. Ultimately, the best model was used to generate a map of the SOC content. Research shows that: The Pearson correlation coefficient (r) between soil total nitrogen and SOC content is highest in both 0-5cm and 5-10cm soil layers (r=0.71, r=0.87). Optimal models for SOC content in the 0-5cm and 5-10cm soil layers are the random forest regression model and the boosted regression tree model, respectively. The coefficient of determination (R2) of the models are above 0.9. In the both soil layers, the performance of models constructed using regression tree algorithms is better than those constructed using linear regression, with the former having a greater R2 than the latter. Specifically, the R2 of the 0-5cm soil layer are 0.998 and 0.789, and the R2 of the 5-10cm soil layer are 0.997 and 0.996.
AbstractList Understanding the organic carbon content of forest soil will aid in studying the spatial distribution pattern of regional soil organic carbon (SOC) storage. Monitoring and researching forest SOC content is a crucial task that usually involves outdoor sampling and indoor experiments, which takes up much time. To improving its work efficiency, estimation models for topsoil organic carbon content are established. Correlation analysis was employed to evaluate the impact of factors (including elevation, slope, slope orientation, curvature, topographic wetness index, normalized difference vegetation index, enhanced vegetation index, and total nitrogen) on SOC content. Models for forest SOC content were constructed by machine learning algorithms using the above factors to enhance the efficiency of carbon storage estimation. Ultimately, the best model was used to generate a map of the SOC content. Research shows that: The Pearson correlation coefficient (r) between soil total nitrogen and SOC content is highest in both 0-5cm and 5-10cm soil layers (r=0.71, r=0.87). Optimal models for SOC content in the 0-5cm and 5-10cm soil layers are the random forest regression model and the boosted regression tree model, respectively. The coefficient of determination (R2) of the models are above 0.9. In the both soil layers, the performance of models constructed using regression tree algorithms is better than those constructed using linear regression, with the former having a greater R2 than the latter. Specifically, the R2 of the 0-5cm soil layer are 0.998 and 0.789, and the R2 of the 5-10cm soil layer are 0.997 and 0.996.
Author Yue, Haijun
Zhou, Pei
Zhang, Jie
Song, Mingyue
Guo, Xiaoyu
Zheng, Shulin
Author_xml – sequence: 1
  givenname: Shulin
  surname: Zheng
  fullname: Zheng, Shulin
  organization: College of Energy and Transportation Engineering, Inner Mongolia Agricultural University, Hohhot, China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0002-6420-7356
  surname: Zhang
  fullname: Zhang, Jie
  email: zhangjie111@imau.edu.cn
  organization: College of Energy and Transportation Engineering, Inner Mongolia Agricultural University, Hohhot, China
– sequence: 3
  givenname: Mingyue
  surname: Song
  fullname: Song, Mingyue
  organization: College of Energy and Transportation Engineering, Inner Mongolia Agricultural University, Hohhot, China
– sequence: 4
  givenname: Pei
  surname: Zhou
  fullname: Zhou, Pei
  organization: College of Forestry, Inner Mongolia Agricultural University, Hohhot, China
– sequence: 5
  givenname: Xiaoyu
  surname: Guo
  fullname: Guo, Xiaoyu
  organization: Engebei Ecological Demonstration Zone Management Committee of Ordos, Ordos, China
– sequence: 6
  givenname: Haijun
  surname: Yue
  fullname: Yue, Haijun
  organization: College of Energy and Transportation Engineering, Inner Mongolia Agricultural University, Hohhot, China
BookMark eNpNkd1KAzEQhYNU8PcJ9CIv0Jrf3eSyrq0KimD1OmSTSV3ZbkqSG9_erS3SuZlhzpwPhnOBJkMcAKEbSmaUEn03b5rFajVjhIkZF0oTxk7QOaOVnnLJq8nRfIauc_4mY6lxJetzlBe52Lbv8tcGhoJjwOUL8Gv00OMQEx7lbmNLN6z_hLe0tkPncGNTGwfcxKEcbMuYIBf8Ebc5dj2-txk8Hk_eYRML4BUMeQd5sMVeodNg-wzXh36JPpeLj-Zp-vL2-NzMX6aOc1qmrZeKQmt5xYjQlgNRlRZSi8pJUC4oL2rNvKQVZU5xr9xOaoPzSpIaAr9Ez3uuj_bbbNP4SPox0XbmbxHT2thUOteDkSPXSdlqzqQIQSntWwWCKUoID5KNLL5nuRRzThD-eZSYXQxmH4PZxWAOMYyu272rA4AjRy0IrRn_BboAhUI
CODEN IAECCG
Cites_doi 10.5194/nhess-21-1247-2021
10.1007/s11676-020-01155-1
10.1016/j.geodrs.2023.e00605
10.1016/j.geoderma.2024.117025
10.4028/www.scientific.net/AMR.1010-1012.1194
10.1002/ldr.4895
10.3390/rs12030393
10.1111/j.1365-2656.2008.01390.x
10.3390/rs15174241
10.1007/s12517-023-11188-5
10.3390/su8111154
10.1016/j.geoderma.2020.114365
10.3390/su14159390
10.1016/j.geoderma.2024.117036
10.1016/j.geoderma.2021.115402
10.1016/j.isprsjprs.2024.09.038
10.1016/j.compag.2024.109494
10.9734/ijpss/2023/v35i183460
10.3390/f10111023
10.1016/j.jenvman.2021.112483
10.1002/ldr.2675
10.3390/f14081518
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2024.3489022
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Forestry
EISSN 2169-3536
EndPage 162074
ExternalDocumentID oai_doaj_org_article_5459c55b93254ff889db8e4281003f52
10_1109_ACCESS_2024_3489022
10740172
Genre orig-research
GrantInformation_xml – fundername: Key Research and Development and Achievement Transformation Plan Projects of Inner Mongolia Autonomous Region
  grantid: 2022YFSH0129
– fundername: Special Research Project on Carbon Peak and Carbon Neutralization of Colleges and Universities of Inner Mongolia Autonomous Region
  grantid: STZX202226
– fundername: Basic Scientific Research Business Fee Items of Universities in Inner Mongolia Autonomous Region
  grantid: BR230146
  funderid: 10.13039/501100013066
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c331t-bd581eba362049a3e086945946c5e8cf8d4792d51612c83d8c946cbfcd8507ef3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001349757300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:43 EDT 2025
Sat Nov 29 04:27:11 EST 2025
Wed Aug 27 03:06:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-bd581eba362049a3e086945946c5e8cf8d4792d51612c83d8c946cbfcd8507ef3
ORCID 0000-0002-6420-7356
OpenAccessLink https://doaj.org/article/5459c55b93254ff889db8e4281003f52
PageCount 13
ParticipantIDs crossref_primary_10_1109_ACCESS_2024_3489022
doaj_primary_oai_doaj_org_article_5459c55b93254ff889db8e4281003f52
ieee_primary_10740172
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
Du (ref2) 2022; 31
ref30
ref11
ref10
Shen (ref35) 2024; 60
ref1
ref17
ref16
ref19
Zang (ref26) 2020; 42
Muñoz (ref36) 2024; 299
Chen (ref18) 2020; 29
Li (ref31) 2023
Wang (ref32) 2024; 35
Zhao (ref34) 2024; 43
ref23
ref25
Du (ref27) 2022; 35
Yan (ref5) 2023; 20
ref20
Chen (ref6) 2010; 38
ref22
ref21
ref28
Zhao (ref24) 2019; 42
Zhang (ref33) 2014; 34
ref8
ref7
ref9
Zhao (ref29) 2024; 37
ref4
ref3
Yuan (ref37) 2024; 31
References_xml – ident: ref23
  doi: 10.5194/nhess-21-1247-2021
– volume: 20
  start-page: 133
  issue: 4
  year: 2023
  ident: ref5
  article-title: Soil carbon sequestration capacity of different land use types in the context of sustainable development
  publication-title: J Yangtze Univ (Natural Sci. Ed.)
– ident: ref25
  doi: 10.1007/s11676-020-01155-1
– ident: ref20
  doi: 10.1016/j.geodrs.2023.e00605
– volume: 31
  issue: 5
  year: 2024
  ident: ref37
  article-title: Comparative analysis on models for predicting the spatial distribution of soil organic carbon density with limited samples
  publication-title: Res. Soil Water Conserv.
– ident: ref8
  doi: 10.1016/j.geoderma.2024.117025
– volume: 43
  start-page: 264
  issue: 1
  year: 2024
  ident: ref34
  article-title: Influencing factors of soil organic carbon in mixed spruce-fir-broadleaved forest based on structural equation
  publication-title: Chin. J. Ecol.
– ident: ref1
  doi: 10.4028/www.scientific.net/AMR.1010-1012.1194
– ident: ref30
  doi: 10.1002/ldr.4895
– ident: ref22
  doi: 10.3390/rs12030393
– ident: ref17
  doi: 10.1111/j.1365-2656.2008.01390.x
– start-page: 80
  issue: 4
  year: 2023
  ident: ref31
  article-title: Spatial distribution characteristics of soil organic carbon in Quercus variabilis plantation and its influencing factors
  publication-title: Forest Grassland Resour Res.
– ident: ref15
  doi: 10.3390/rs15174241
– volume: 37
  start-page: 63
  issue: 1
  year: 2024
  ident: ref29
  article-title: Soil carbon changes and its influencing factors in major forest types in the subtropical area of Yunnan province
  publication-title: Forest Res.
– volume: 299
  year: 2024
  ident: ref36
  article-title: A random forest model to predict soil organic carbon storage in mangroves from southern Colombian Pacific coast
  publication-title: Estuarine, Coastal Shelf Sci.
– volume: 35
  start-page: 76
  issue: 1
  year: 2022
  ident: ref27
  article-title: Active components of forest soil organic carbon and its influencing factors in China
  publication-title: World Forestry Res.
– ident: ref4
  doi: 10.1007/s12517-023-11188-5
– ident: ref16
  doi: 10.3390/su8111154
– ident: ref19
  doi: 10.1016/j.geoderma.2020.114365
– volume: 35
  start-page: 1055
  issue: 4
  year: 2024
  ident: ref32
  article-title: Estimation model for individual tree in natural Larix Gmelinii forest based on random forest
  publication-title: Chin. J. Appl. Ecol.
– ident: ref12
  doi: 10.3390/su14159390
– volume: 31
  start-page: 663
  issue: 4
  year: 2022
  ident: ref2
  article-title: Distribution characteristics and influencing factors of soil organic carbon in spruce-fir broad-leaved mixed forest on north slope of Changbai mountains
  publication-title: Ecol. Environ Sci.
– ident: ref10
  doi: 10.1016/j.geoderma.2024.117036
– volume: 42
  start-page: 113
  issue: 1
  year: 2019
  ident: ref24
  article-title: Research on topographic wetness index and its implications of surface water environment considering micro-reliefs on plains
  publication-title: J. Hefei Univ. Technol. (Natural Sci.)
– ident: ref28
  doi: 10.1016/j.geoderma.2021.115402
– ident: ref7
  doi: 10.1016/j.isprsjprs.2024.09.038
– volume: 38
  start-page: 59
  issue: 4
  year: 2010
  ident: ref6
  article-title: Ecological characteristics of density and reserves of organic carbon in typical forest soil in Guangzhou
  publication-title: J. Northeast Forestry Univ.
– ident: ref9
  doi: 10.1016/j.compag.2024.109494
– volume: 42
  start-page: 553
  issue: 3
  year: 2020
  ident: ref26
  article-title: A study of a stand basal area growth model for Chinese fir plantations using boosted regression trees
  publication-title: Acta Agriculturae Universitatis Jiangxiensis
– volume: 60
  start-page: 65
  issue: 3
  year: 2024
  ident: ref35
  article-title: Characterization of soil organic carbon and key influencing factors of natural forests in central China based on machine learning algorithms
  publication-title: Scientia Silvae Sinicae
– ident: ref14
  doi: 10.9734/ijpss/2023/v35i183460
– ident: ref21
  doi: 10.3390/f10111023
– ident: ref13
  doi: 10.1016/j.jenvman.2021.112483
– ident: ref3
  doi: 10.1002/ldr.2675
– volume: 29
  start-page: 322
  issue: 2
  year: 2020
  ident: ref18
  article-title: Research on spatio-temporal characteristics and driving factors of urban expansion in Nanchang city based on BRT model
  publication-title: Resour Environ Yangtze Basin
– volume: 34
  start-page: 650
  issue: 3
  year: 2014
  ident: ref33
  article-title: The basic principle of random forest and its applications in ecology—A case study ofPinus yunnanensis
  publication-title: Acta Ecolog. Sinica
– ident: ref11
  doi: 10.3390/f14081518
SSID ssj0000816957
Score 2.299866
Snippet Understanding the organic carbon content of forest soil will aid in studying the spatial distribution pattern of regional soil organic carbon (SOC) storage....
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 162062
SubjectTerms Carbon
Correlation
Enhanced vegetation index
Forestry
linear regression algorithms
Predictive models
Random forests
regression tree algorithms
Regression tree analysis
Remote sensing
remote sensing data
Soil measurement
Topsoil organic carbon content
Vegetation mapping
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagQggG3ojykgdG0qZ1HNtjKa0YEEI8JLYofqFKKEFtyu_nzg4IBga2yHYuTr4k_s72fUfIhTCGMxgmEp2jqLbmOlG4UqjLlMkcQy2jzuytuLuTLy_qvg1WD7Ewzrmw-cz18DCs5dvaLHGqrI-bB9FnWSWrQuQxWOt7QgUzSCguWmWhQar6o_EYbgJ8wGHWYxkuqA1_jT5BpP9XVpUwqEy3_9mdHbLVskc6inDvkhVX7ZHNH5qCe2Qdk21iBrd9spgA9QuzTGiI1p4C26OY_eyNAlelUD1Dwlq9hooYlmnouJzruqJBtyqeFk3Sp_p9Uc_e6BWMfJZCkwcHQDv6iJvgwch12ZQH5Hk6eRrfJG2ShcQwNmgSbbkcOF0yFKZXJXPg46iMqyw33Enjpc2EGloOzHBoJLPSYJX2xkqgks6zQ9Kp6sodEWpt6kvLhE9LBr8GMAq-o3JMWI0RuapLLr8efvEetTSK4IOkqohYFYhV0WLVJVcI0HdTFMIOBQBC0X5XBRBAZTjXQEN55r2UymrpwKcawO_KczBygMD9uF7E7PiP8hOygX2IkyynpNPMl-6MrJmPZraYn4c37hOG_dMw
  priority: 102
  providerName: IEEE
Title Establishment of the Model for Estimating the Organic Carbon Content of Forest Topsoil Based on Remote Sensing Data
URI https://ieeexplore.ieee.org/document/10740172
https://doaj.org/article/5459c55b93254ff889db8e4281003f52
Volume 12
WOSCitedRecordID wos001349757300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlUXlgJDSJ48Ye29KKARDiIXWL4heqVCVVGxj57dzZAZWJhSVD7DjOneP7zvZ9R8hlrjVnYCYi1UdSbcVVJHGnUJUxE30MtQw8s3f5w4OYTuXjWqovPBMW6IGD4Hpg4aXmXAHO4JlzQkijhAXQnMB4dNzPvnEu15wpPweLpC953tIMJbHsDUYj-CJwCNPsmmW4u5b-MkWesf9XihVvYSZ7ZLeFhnQQurRPNmx1QHbWCAMPyWoMYM6vG-GiHq0dBfxGMZ_ZnAL6pFA8QwhavfmCEGip6ahcqrqinokqPIYZOVcNfakXq3o2p0OwZYZClScLqrP0GY-1QyM3ZVMekdfJ-GV0G7VpEyLNWNJEynCRWFUypJqXJbPgtUiQYtbX3ArthMlymRoOWC_VghmhsUg5bQSAQ-vYMdms6sqeEGpM7ErDcheXDH52aBS8QWlZbhTG2MoOufqWYLEI7BiF9ypiWQSBFyjwohV4hwxRyj9Vkdra3wCFF63Ci78U3iFHqKO192FSwTw9_Y_Gz8g2djissZyTzWb5bi_Ilv5oZqtl148xuN5_jrs-UvALFELTHA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4a3cTGYYxfGjCGDxwJTeO4sY9QWhWtVAiKxC2Kf02VUILawt-_9-wMwWGH3SLbeXHyJfH3bL_vAZwUxgiOw0Si-ySqrYVOFK0U6irlsk-hllFndlJMp_LhQd20weohFsY5FzafuTM6DGv5tjHPNFXWpc2D5LOswUeR51kaw7Vep1Qoh4QSRast1EtV93wwwNtALzDLz3hOS2rZu_EnyPS_y6sShpXR5n926Bt8bfkjO4-Ab8EHV2_DxhtVwW1Yp3SblMNtB5ZDJH9hnokMscYz5HuM8p89MmSrDKvnRFnr36EiBmYaNqgWuqlZUK6Kp0WTbNY8LZv5I7vAsc8ybHLrEGrH7mgbPBq5rFbVLtyPhrPBOGnTLCSG894q0VbIntMVJ2l6VXGHXo7Khcr7RjhpvLR5oTIrkBtmRnIrDVVpb6xEMuk834NO3dTuOzBrU19ZXvi04vhzQKPoPSrHC6spJlftw-nfh18-RTWNMnghqSojViVhVbZY7cMFAfTalKSwQwGCULZfVokUUBkhNBJRkXsvpbJaOvSqevjD8gKN7BJwb64XMTv4R_kxfB7Prifl5Gr66xC-UH_ilMsP6KwWz-4IPpmX1Xy5-Bnevj-qMNZ3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishment+of+the+Model+for+Estimating+the+Organic+Carbon+Content+of+Forest+Topsoil+Based+on+Remote+Sensing+Data&rft.jtitle=IEEE+access&rft.au=Zheng%2C+Shulin&rft.au=Zhang%2C+Jie&rft.au=Song%2C+Mingyue&rft.au=Zhou%2C+Pei&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=162062&rft.epage=162074&rft_id=info:doi/10.1109%2FACCESS.2024.3489022&rft.externalDocID=10740172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon