Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones

We describe an implementation of nonsymmetric interior-point methods for linear cone programs defined by two types of matrix cones: the cone of positive semidefinite matrices with a given chordal sparsity pattern and its dual cone, the cone of chordal sparse matrices that have a positive semidefinit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming computation Ročník 2; číslo 3-4; s. 167 - 201
Hlavní autoři: Andersen, Martin S., Dahl, Joachim, Vandenberghe, Lieven
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.12.2010
Témata:
ISSN:1867-2949, 1867-2957
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We describe an implementation of nonsymmetric interior-point methods for linear cone programs defined by two types of matrix cones: the cone of positive semidefinite matrices with a given chordal sparsity pattern and its dual cone, the cone of chordal sparse matrices that have a positive semidefinite completion. The implementation takes advantage of fast recursive algorithms for evaluating the function values and derivatives of the logarithmic barrier functions for these cones. We present experimental results of two implementations, one of which is based on an augmented system approach, and a comparison with publicly available interior-point solvers for semidefinite programming.
ISSN:1867-2949
1867-2957
DOI:10.1007/s12532-010-0016-2