An efficient particle tracking algorithm for large-scale parallel pseudo-spectral simulations of turbulence
Particle tracking in large-scale numerical simulations of turbulent flows presents one of the major bottlenecks in parallel performance and scaling efficiency. Here, we describe a particle tracking algorithm for large-scale parallel pseudo-spectral simulations of turbulence which scales well up to b...
Gespeichert in:
| Veröffentlicht in: | Computer physics communications Jg. 278; S. 108406 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.09.2022
Elsevier |
| Schlagworte: | |
| ISSN: | 0010-4655, 1879-2944 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Particle tracking in large-scale numerical simulations of turbulent flows presents one of the major bottlenecks in parallel performance and scaling efficiency. Here, we describe a particle tracking algorithm for large-scale parallel pseudo-spectral simulations of turbulence which scales well up to billions of tracer particles on modern high-performance computing architectures. We summarize the standard parallel methods used to solve the fluid equations in our hybrid MPI/OpenMP implementation. As the main focus, we describe the implementation of the particle tracking algorithm and document its computational performance. To address the extensive inter-process communication required by particle tracking, we introduce a task-based approach to overlap point-to-point communications with computations, thereby enabling improved resource utilization. We characterize the computational cost as a function of the number of particles tracked and compare it with the flow field computation, showing that the cost of particle tracking is very small for typical applications. |
|---|---|
| ISSN: | 0010-4655 1879-2944 |
| DOI: | 10.1016/j.cpc.2022.108406 |