A new Gibbs sampling based algorithm for Bayesian model updating with incomplete complex modal data

•Literature establishes motives behind interest in Bayesian model updating.•Model updating of a linear dynamic system with non-classical damping using modal data.•Gibbs-sampling based algorithm proposed to update the PDF of the model parameters.•The approach also provides updated probability distrib...

Full description

Saved in:
Bibliographic Details
Published in:Mechanical systems and signal processing Vol. 92; pp. 156 - 172
Main Authors: Cheung, Sai Hung, Bansal, Sahil
Format: Journal Article
Language:English
Published: Berlin Elsevier Ltd 01.08.2017
Elsevier BV
Subjects:
ISSN:0888-3270, 1096-1216
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Literature establishes motives behind interest in Bayesian model updating.•Model updating of a linear dynamic system with non-classical damping using modal data.•Gibbs-sampling based algorithm proposed to update the PDF of the model parameters.•The approach also provides updated probability distribution of complete mode shapes.•Convergence and numerical issues arising in case of high-dimensionality are addressed. Model updating using measured system dynamic response has a wide range of applications in system response evaluation and control, health monitoring, or reliability and risk assessment. In this paper, we are interested in model updating of a linear dynamic system with non-classical damping based on incomplete modal data including modal frequencies, damping ratios and partial complex mode shapes of some of the dominant modes. In the proposed algorithm, the identification model is based on a linear structural model where the mass and stiffness matrix are represented as a linear sum of contribution of the corresponding mass and stiffness matrices from the individual prescribed substructures, and the damping matrix is represented as a sum of individual substructures in the case of viscous damping, in terms of mass and stiffness matrices in the case of Rayleigh damping or a combination of the former. To quantify the uncertainties and plausibility of the model parameters, a Bayesian approach is developed. A new Gibbs-sampling based algorithm is proposed that allows for an efficient update of the probability distribution of the model parameters. In addition to the model parameters, the probability distribution of complete mode shapes is also updated. Convergence issues and numerical issues arising in the case of high-dimensionality of the problem are addressed and solutions to tackle these problems are proposed. The effectiveness and efficiency of the proposed method are illustrated by numerical examples with complex modes.
AbstractList •Literature establishes motives behind interest in Bayesian model updating.•Model updating of a linear dynamic system with non-classical damping using modal data.•Gibbs-sampling based algorithm proposed to update the PDF of the model parameters.•The approach also provides updated probability distribution of complete mode shapes.•Convergence and numerical issues arising in case of high-dimensionality are addressed. Model updating using measured system dynamic response has a wide range of applications in system response evaluation and control, health monitoring, or reliability and risk assessment. In this paper, we are interested in model updating of a linear dynamic system with non-classical damping based on incomplete modal data including modal frequencies, damping ratios and partial complex mode shapes of some of the dominant modes. In the proposed algorithm, the identification model is based on a linear structural model where the mass and stiffness matrix are represented as a linear sum of contribution of the corresponding mass and stiffness matrices from the individual prescribed substructures, and the damping matrix is represented as a sum of individual substructures in the case of viscous damping, in terms of mass and stiffness matrices in the case of Rayleigh damping or a combination of the former. To quantify the uncertainties and plausibility of the model parameters, a Bayesian approach is developed. A new Gibbs-sampling based algorithm is proposed that allows for an efficient update of the probability distribution of the model parameters. In addition to the model parameters, the probability distribution of complete mode shapes is also updated. Convergence issues and numerical issues arising in the case of high-dimensionality of the problem are addressed and solutions to tackle these problems are proposed. The effectiveness and efficiency of the proposed method are illustrated by numerical examples with complex modes.
Model updating using measured system dynamic response has a wide range of applications in system response evaluation and control, health monitoring, or reliability and risk assessment. In this paper, we are interested in model updating of a linear dynamic system with non-classical damping based on incomplete modal data including modal frequencies, damping ratios and partial complex mode shapes of some of the dominant modes. In the proposed algorithm, the identification model is based on a linear structural model where the mass and stiffness matrix are represented as a linear sum of contribution of the corresponding mass and stiffness matrices from the individual prescribed substructures, and the damping matrix is represented as a sum of individual substructures in the case of viscous damping, in terms of mass and stiffness matrices in the case of Rayleigh damping or a combination of the former. To quantify the uncertainties and plausibility of the model parameters, a Bayesian approach is developed. A new Gibbs-sampling based algorithm is proposed that allows for an efficient update of the probability distribution of the model parameters. In addition to the model parameters, the probability distribution of complete mode shapes is also updated. Convergence issues and numerical issues arising in the case of high-dimensionality of the problem are addressed and solutions to tackle these problems are proposed. The effectiveness and efficiency of the proposed method are illustrated by numerical examples with complex modes.
Author Cheung, Sai Hung
Bansal, Sahil
Author_xml – sequence: 1
  givenname: Sai Hung
  surname: Cheung
  fullname: Cheung, Sai Hung
  email: shcheung@ntu.edu.sg
– sequence: 2
  givenname: Sahil
  surname: Bansal
  fullname: Bansal, Sahil
BookMark eNqFkD1PwzAQhi0EEuXjF7BYYk7x2U1qDwxQQUGqxMJuOckFXCV2sFOg_x6HMDGAdNLd8Dx3uveEHDrvkJALYHNgUFxt5_suxn7OGSznDFLlB2QGTBUZcCgOyYxJKTPBl-yYnMS4ZYypBStmpLqhDj_o2pZlpNF0fWvdCy1NxJqa9sUHO7x2tPGB3po9Rmsc7XyNLd31tRlG9iMR1LrKJxcHpNPwOWKmpQkyZ-SoMW3E859-Sp7v755XD9nmaf24utlklRAwZCVXspbYKKHypqzzkkMjGC6aWilTCKGwyI1qBKCUIHku0IA0nCHIMi9AnJLLaW0f_NsO46C3fhdcuqhBLTjIAhRPlJioKvgYAza6D7YzYa-B6TFMvdXfYeoxTM0gVZ4s9cuq7JD-924Ixrb_uNeTi-n3d4tBx8qiq7C2AatB197-6X8B6RSUVw
CitedBy_id crossref_primary_10_1016_j_amc_2023_127891
crossref_primary_10_1016_j_apm_2018_05_004
crossref_primary_10_1002_stc_2936
crossref_primary_10_1016_j_strusafe_2023_102325
crossref_primary_10_3390_app112210615
crossref_primary_10_1016_j_ymssp_2021_108407
crossref_primary_10_1016_j_compgeo_2025_107087
crossref_primary_10_1002_stc_2770
crossref_primary_10_3390_app7060601
crossref_primary_10_1007_s13369_020_05056_7
crossref_primary_10_1016_j_ymssp_2021_107760
crossref_primary_10_1007_s00707_023_03819_5
crossref_primary_10_1016_j_ymssp_2023_110324
crossref_primary_10_1016_j_ymssp_2023_110401
crossref_primary_10_1016_j_engstruct_2023_116886
crossref_primary_10_1016_j_istruc_2022_01_082
crossref_primary_10_1016_j_cma_2021_113850
crossref_primary_10_1007_s41024_025_00587_8
crossref_primary_10_1016_j_jsv_2021_116726
crossref_primary_10_1016_j_probengmech_2022_103337
crossref_primary_10_1016_j_cma_2024_117418
crossref_primary_10_1016_j_jsv_2019_115139
crossref_primary_10_1016_j_istruc_2022_05_041
crossref_primary_10_1061__ASCE_EM_1943_7889_0001714
crossref_primary_10_1016_j_probengmech_2025_103761
crossref_primary_10_1016_j_istruc_2023_05_020
crossref_primary_10_3390_su14074231
crossref_primary_10_1016_j_ymssp_2021_108782
crossref_primary_10_1016_j_ymssp_2021_108583
crossref_primary_10_1016_j_cirpj_2022_06_006
crossref_primary_10_1016_j_ymssp_2025_112675
crossref_primary_10_1016_j_jsv_2024_118457
crossref_primary_10_1016_j_jsv_2024_118730
crossref_primary_10_1155_2020_5142925
crossref_primary_10_1002_stc_2556
crossref_primary_10_1088_1757_899X_936_1_012017
crossref_primary_10_1061_JENMDT_EMENG_8138
crossref_primary_10_1016_j_apm_2022_11_039
crossref_primary_10_1016_j_ymssp_2022_108985
crossref_primary_10_1061__ASCE_ST_1943_541X_0003354
crossref_primary_10_1016_j_engstruct_2023_115924
crossref_primary_10_1109_ACCESS_2018_2877630
crossref_primary_10_1016_j_jsv_2023_117712
crossref_primary_10_1016_j_engstruct_2018_06_040
crossref_primary_10_1088_3050_2454_adc580
crossref_primary_10_1007_s13349_024_00768_y
crossref_primary_10_1016_j_ymssp_2019_106444
crossref_primary_10_1002_stc_2780
crossref_primary_10_1177_1475921720985143
crossref_primary_10_1016_j_ymssp_2019_106524
crossref_primary_10_1177_1687814019884165
crossref_primary_10_1007_s10518_023_01670_6
crossref_primary_10_1016_j_sigpro_2018_02_021
crossref_primary_10_1016_j_jobe_2022_105004
crossref_primary_10_1016_j_cma_2017_07_032
Cites_doi 10.1080/01621459.1990.10474968
10.1061/(ASCE)EM.1943-7889.0000839
10.1615/Int.J.UncertaintyQuantification.2015013581
10.1061/(ASCE)0733-9399(2009)135:4(243)
10.1016/j.compstruc.2012.10.018
10.1111/j.1467-8667.2012.00802.x
10.1002/stc.424
10.1016/j.ymssp.2014.11.001
10.1002/stc.453
10.1061/(ASCE)0733-9399(2002)128:4(380)
10.1016/j.cma.2013.08.015
10.1061/(ASCE)0733-9399(1997)123:12(1219)
10.1061/(ASCE)0733-9399(1998)124:4(455)
10.1016/j.finel.2013.11.002
10.1061/(ASCE)0733-9399(2004)130:1(3)
10.1016/j.cma.2014.06.032
10.1111/mice.12142
10.1111/j.1467-8667.2006.00432.x
10.1061/(ASCE)0733-9399(2007)133:7(816)
10.1016/j.ymssp.2014.06.005
10.1109/TPAMI.1984.4767596
10.1016/j.compstruc.2014.01.013
10.1016/j.ymssp.2015.05.031
10.1002/eqe.2268
10.1002/eqe.288
10.1016/j.strusafe.2014.06.004
10.1061/(ASCE)0733-9399(2003)129:1(9)
10.1061/(ASCE)EM.1943-7889.0001066
10.1006/mssp.2000.1351
10.1016/j.strusafe.2008.06.002
10.1016/j.ymssp.2013.07.016
10.1016/S0266-8920(01)00004-2
ContentType Journal Article
Copyright 2017
Copyright Elsevier BV Aug 2017
Copyright_xml – notice: 2017
– notice: Copyright Elsevier BV Aug 2017
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2017.01.015
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
EndPage 172
ExternalDocumentID 10_1016_j_ymssp_2017_01_015
S0888327017300183
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c331t-b298d8ef9395fbd5b21f30e4fd99a6339e65a9f31e8818253ea18a20e18b5613
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395613100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-3270
IngestDate Mon Jul 14 07:44:20 EDT 2025
Sat Nov 29 02:08:12 EST 2025
Tue Nov 18 21:57:23 EST 2025
Fri Feb 23 02:29:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bayesian model updating
Stochastic simulation
Non-classical damping
Gibbs sampling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-b298d8ef9395fbd5b21f30e4fd99a6339e65a9f31e8818253ea18a20e18b5613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1942186192
PQPubID 2045429
PageCount 17
ParticipantIDs proquest_journals_1942186192
crossref_primary_10_1016_j_ymssp_2017_01_015
crossref_citationtrail_10_1016_j_ymssp_2017_01_015
elsevier_sciencedirect_doi_10_1016_j_ymssp_2017_01_015
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Boulkaibet (b0080) 2015; 52
Yan, Katafygiotis (b0110) 2015; 52
Beck (b0175) 2010; 17
Papadimitriou (b0065) 2012; 19
Yang (b0040) 2003; 32
Zhang, Au (b0115) 2016; 66–67
Johnson (b0185) 2004; 130
Yuen, Beck (b0090) 2003; 129
Chakraborty, Sen (b0075) 2014; 80
Ching, Muto, Beck (b0095) 2006; 21
Yuen, Katafygiotis (b0035) 2001; 16
Sun, Betti (b0105) 2015; 30
Ching, Chen (b0135) 2007; 133
Facchini, Betti, Biagini (b0050) 2014; 138
Papadimitriou, Papadioti (b0100) 2013; 126
Beck, Au (b0125) 2002; 128
Cheung, Beck (b0130) 2009; 135
E.T. Jaynes, in: R.D. Levine, M. Tribus (Eds.), Where Do We Stand on Maximum Entropy?, 1978, The MIT Press.
Gelfand (b0180) 1990; 85
Papadimitriou, Beck, Katafygiotis (b0160) 1997; 123
Straub, Papaioannou (b0145) 2014; 141
Beck, Katafygiotis (b0085) 1998; 124
S.-K. Au, F.A. DiazDelaO, I. Yoshida, Bayesian Updating and Model Class Selection with Subset Simulation, 2015. arXiv preprint
Au (b0055) 2014; 48
Ghahari (b0045) 2013; 42
Jensen (b0070) 2014; 279
Jensen (b0030) 2013; 267
Zhang, Wan, Sato (b0120) 2013; 28
Friswell, Mottershead (b0005) 1995
.
Bansal (b0155) 2015; 5
Simoen, De Roeck, Lombaert (b0020) 2015; 56
Zhang (b0060) 2016; 70
Okasha, Frangopol (b0015) 2012; 8
Betz, Papaioannou, Straub (b0140) 2016; 142
Liel (b0025) 2009; 31
Hemez, Doebling (b0010) 2001; 15
Geman, Geman (b0165) 1984; 6
Yang (10.1016/j.ymssp.2017.01.015_b0040) 2003; 32
Bansal (10.1016/j.ymssp.2017.01.015_b0155) 2015; 5
Liel (10.1016/j.ymssp.2017.01.015_b0025) 2009; 31
Papadimitriou (10.1016/j.ymssp.2017.01.015_b0160) 1997; 123
Straub (10.1016/j.ymssp.2017.01.015_b0145) 2014; 141
Sun (10.1016/j.ymssp.2017.01.015_b0105) 2015; 30
Cheung (10.1016/j.ymssp.2017.01.015_b0130) 2009; 135
Geman (10.1016/j.ymssp.2017.01.015_b0165) 1984; 6
Beck (10.1016/j.ymssp.2017.01.015_b0125) 2002; 128
Gelfand (10.1016/j.ymssp.2017.01.015_b0180) 1990; 85
Ching (10.1016/j.ymssp.2017.01.015_b0095) 2006; 21
Jensen (10.1016/j.ymssp.2017.01.015_b0070) 2014; 279
Zhang (10.1016/j.ymssp.2017.01.015_b0115) 2016; 66–67
Boulkaibet (10.1016/j.ymssp.2017.01.015_b0080) 2015; 52
Papadimitriou (10.1016/j.ymssp.2017.01.015_b0065) 2012; 19
Zhang (10.1016/j.ymssp.2017.01.015_b0120) 2013; 28
Jensen (10.1016/j.ymssp.2017.01.015_b0030) 2013; 267
Au (10.1016/j.ymssp.2017.01.015_b0055) 2014; 48
Yuen (10.1016/j.ymssp.2017.01.015_b0090) 2003; 129
Johnson (10.1016/j.ymssp.2017.01.015_b0185) 2004; 130
10.1016/j.ymssp.2017.01.015_b0170
Ghahari (10.1016/j.ymssp.2017.01.015_b0045) 2013; 42
Zhang (10.1016/j.ymssp.2017.01.015_b0060) 2016; 70
10.1016/j.ymssp.2017.01.015_b0150
Ching (10.1016/j.ymssp.2017.01.015_b0135) 2007; 133
Simoen (10.1016/j.ymssp.2017.01.015_b0020) 2015; 56
Betz (10.1016/j.ymssp.2017.01.015_b0140) 2016; 142
Hemez (10.1016/j.ymssp.2017.01.015_b0010) 2001; 15
Okasha (10.1016/j.ymssp.2017.01.015_b0015) 2012; 8
Facchini (10.1016/j.ymssp.2017.01.015_b0050) 2014; 138
Chakraborty (10.1016/j.ymssp.2017.01.015_b0075) 2014; 80
Beck (10.1016/j.ymssp.2017.01.015_b0085) 1998; 124
Friswell (10.1016/j.ymssp.2017.01.015_b0005) 1995
Yan (10.1016/j.ymssp.2017.01.015_b0110) 2015; 52
Beck (10.1016/j.ymssp.2017.01.015_b0175) 2010; 17
Papadimitriou (10.1016/j.ymssp.2017.01.015_b0100) 2013; 126
Yuen (10.1016/j.ymssp.2017.01.015_b0035) 2001; 16
References_xml – volume: 138
  start-page: 183
  year: 2014
  end-page: 194
  ident: b0050
  article-title: Neural network based modal identification of structural systems through output-only measurement
  publication-title: Comput. Struct.
– volume: 6
  start-page: 721
  year: 1984
  end-page: 741
  ident: b0165
  article-title: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 267
  start-page: 293
  year: 2013
  end-page: 317
  ident: b0030
  article-title: The use of updated robust reliability measures in stochastic dynamical systems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 8
  start-page: 999
  year: 2012
  end-page: 1016
  ident: b0015
  article-title: Integration of structural health monitoring in a system performance based life-cycle bridge management framework
  publication-title: Struct. Infrastruct. Eng.
– volume: 32
  start-page: 1533
  year: 2003
  end-page: 1554
  ident: b0040
  article-title: System identification of linear structures based on Hilbert-Huang spectral analysis. Part 2: Complex modes
  publication-title: Earthquake Eng. Struct. Dynam.
– volume: 129
  start-page: 9
  year: 2003
  end-page: 20
  ident: b0090
  article-title: Updating properties of nonlinear dynamical systems with uncertain input
  publication-title: J. Eng. Mech.
– volume: 52
  start-page: 115
  year: 2015
  end-page: 132
  ident: b0080
  article-title: Finite element model updating using the shadow hybrid Monte Carlo technique
  publication-title: Mech. Syst. Sig. Process.
– volume: 66–67
  start-page: 43
  year: 2016
  end-page: 61
  ident: b0115
  article-title: Fundamental two-stage formulation for Bayesian system identification, Part II: Application to ambient vibration data
  publication-title: Mech. Syst. Sig. Process.
– volume: 70
  start-page: 209
  year: 2016
  end-page: 220
  ident: b0060
  article-title: Fast Bayesian approach for modal identification using free vibration data, Part I-Most probable value
  publication-title: Mech. Syst. Sig. Process.
– volume: 80
  start-page: 33
  year: 2014
  end-page: 40
  ident: b0075
  article-title: Adaptive response surface based efficient finite element model updating
  publication-title: Finite Elem. Anal. Des.
– volume: 126
  start-page: 15
  year: 2013
  end-page: 28
  ident: b0100
  article-title: Component mode synthesis techniques for finite element model updating
  publication-title: Comput. Struct.
– volume: 130
  start-page: 3
  year: 2004
  end-page: 15
  ident: b0185
  article-title: Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data
  publication-title: J. Eng. Mech.
– volume: 15
  start-page: 45
  year: 2001
  end-page: 74
  ident: b0010
  article-title: Review and assessment of model updating for non-linear, transient dynamics
  publication-title: Mech. Syst. Sig. Process.
– volume: 30
  start-page: 602
  year: 2015
  end-page: 619
  ident: b0105
  article-title: A hybrid optimization algorithm with bayesian inference for probabilistic model updating
  publication-title: Comp.-Aided Civil Infrastruct. Eng.
– volume: 48
  start-page: 15
  year: 2014
  end-page: 33
  ident: b0055
  article-title: Uncertainty law in ambient modal identification—Part I: theory
  publication-title: Mech. Syst. Sig. Process.
– volume: 5
  start-page: 361
  year: 2015
  end-page: 374
  ident: b0155
  article-title: A new Gibbs sampling based bayesian model updating approach using modal data from multiple setups
  publication-title: Int. J. Uncert. Quant.
– volume: 16
  start-page: 219
  year: 2001
  end-page: 231
  ident: b0035
  article-title: Bayesian time-domain approach for modal updating using ambient data
  publication-title: Probab. Eng. Mech.
– volume: 31
  start-page: 197
  year: 2009
  end-page: 211
  ident: b0025
  article-title: Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings
  publication-title: Struct. Saf.
– volume: 128
  start-page: 380
  year: 2002
  end-page: 391
  ident: b0125
  article-title: Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation
  publication-title: J. Eng. Mech.
– volume: 135
  start-page: 243
  year: 2009
  end-page: 255
  ident: b0130
  article-title: Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters
  publication-title: J. Eng. Mech.
– volume: 56
  start-page: 123
  year: 2015
  end-page: 149
  ident: b0020
  article-title: Dealing with uncertainty in model updating for damage assessment: a review
  publication-title: Mech. Syst. Sig. Process.
– volume: 52
  start-page: 260
  year: 2015
  end-page: 271
  ident: b0110
  article-title: A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups
  publication-title: Struct. Saf.
– volume: 142
  start-page: 04016016
  year: 2016
  ident: b0140
  article-title: Transitional Markov Chain Monte Carlo: observations and improvements
  publication-title: J. Eng. Mech.
– volume: 123
  start-page: 1219
  year: 1997
  end-page: 1229
  ident: b0160
  article-title: Asymptotic expansions for reliability and moments of uncertain systems
  publication-title: J. Eng. Mech.
– volume: 28
  start-page: 522
  year: 2013
  end-page: 530
  ident: b0120
  article-title: Advanced Markov chain monte carlo approach for finite element calibration under uncertainty
  publication-title: Comp.-Aided Civil Infrastruct. Eng.
– volume: 124
  start-page: 455
  year: 1998
  end-page: 461
  ident: b0085
  article-title: Updating models and their uncertainties. I: Bayesian statistical framework
  publication-title: J. Eng. Mech.
– reference: .
– year: 1995
  ident: b0005
  article-title: Finite Element Model Updating in Structural Dynamics
– volume: 279
  start-page: 301
  year: 2014
  end-page: 324
  ident: b0070
  article-title: Model-reduction techniques for Bayesian finite element model updating using dynamic response data
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 19
  start-page: 630
  year: 2012
  end-page: 654
  ident: b0065
  article-title: Variability of updated finite element models and their predictions consistent with vibration measurements
  publication-title: Struct. Control Health Monitor.
– reference: S.-K. Au, F.A. DiazDelaO, I. Yoshida, Bayesian Updating and Model Class Selection with Subset Simulation, 2015. arXiv preprint
– volume: 42
  start-page: 1221
  year: 2013
  end-page: 1242
  ident: b0045
  article-title: Response-only modal identification of structures using strong motion data
  publication-title: Earthquake Eng. Struct. Dynam.
– volume: 17
  start-page: 825
  year: 2010
  end-page: 847
  ident: b0175
  article-title: Bayesian system identification based on probability logic
  publication-title: Struct. Control Health Monitor.
– volume: 141
  start-page: 04014134
  year: 2014
  ident: b0145
  article-title: Bayesian updating with structural reliability methods
  publication-title: J. Eng. Mech.
– volume: 21
  start-page: 242
  year: 2006
  end-page: 257
  ident: b0095
  article-title: Structural model updating and health monitoring with incomplete modal data using Gibbs sampler
  publication-title: Comp. Aided Civil Infrastruct. Eng.
– volume: 133
  start-page: 816
  year: 2007
  end-page: 832
  ident: b0135
  article-title: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging
  publication-title: J. Eng. Mech.
– volume: 85
  start-page: 972
  year: 1990
  end-page: 985
  ident: b0180
  article-title: Illustration of Bayesian inference in normal data models using Gibbs sampling
  publication-title: J. Am. Statist. Assoc.
– reference: E.T. Jaynes, in: R.D. Levine, M. Tribus (Eds.), Where Do We Stand on Maximum Entropy?, 1978, The MIT Press.
– volume: 85
  start-page: 972
  issue: 412
  year: 1990
  ident: 10.1016/j.ymssp.2017.01.015_b0180
  article-title: Illustration of Bayesian inference in normal data models using Gibbs sampling
  publication-title: J. Am. Statist. Assoc.
  doi: 10.1080/01621459.1990.10474968
– volume: 141
  start-page: 04014134
  issue: 3
  year: 2014
  ident: 10.1016/j.ymssp.2017.01.015_b0145
  article-title: Bayesian updating with structural reliability methods
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0000839
– volume: 5
  start-page: 361
  issue: 4
  year: 2015
  ident: 10.1016/j.ymssp.2017.01.015_b0155
  article-title: A new Gibbs sampling based bayesian model updating approach using modal data from multiple setups
  publication-title: Int. J. Uncert. Quant.
  doi: 10.1615/Int.J.UncertaintyQuantification.2015013581
– volume: 135
  start-page: 243
  issue: 4
  year: 2009
  ident: 10.1016/j.ymssp.2017.01.015_b0130
  article-title: Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2009)135:4(243)
– volume: 126
  start-page: 15
  year: 2013
  ident: 10.1016/j.ymssp.2017.01.015_b0100
  article-title: Component mode synthesis techniques for finite element model updating
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.10.018
– volume: 28
  start-page: 522
  issue: 7
  year: 2013
  ident: 10.1016/j.ymssp.2017.01.015_b0120
  article-title: Advanced Markov chain monte carlo approach for finite element calibration under uncertainty
  publication-title: Comp.-Aided Civil Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2012.00802.x
– ident: 10.1016/j.ymssp.2017.01.015_b0170
– volume: 17
  start-page: 825
  issue: 7
  year: 2010
  ident: 10.1016/j.ymssp.2017.01.015_b0175
  article-title: Bayesian system identification based on probability logic
  publication-title: Struct. Control Health Monitor.
  doi: 10.1002/stc.424
– year: 1995
  ident: 10.1016/j.ymssp.2017.01.015_b0005
– volume: 56
  start-page: 123
  year: 2015
  ident: 10.1016/j.ymssp.2017.01.015_b0020
  article-title: Dealing with uncertainty in model updating for damage assessment: a review
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2014.11.001
– volume: 19
  start-page: 630
  issue: 5
  year: 2012
  ident: 10.1016/j.ymssp.2017.01.015_b0065
  article-title: Variability of updated finite element models and their predictions consistent with vibration measurements
  publication-title: Struct. Control Health Monitor.
  doi: 10.1002/stc.453
– volume: 128
  start-page: 380
  issue: 4
  year: 2002
  ident: 10.1016/j.ymssp.2017.01.015_b0125
  article-title: Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2002)128:4(380)
– volume: 267
  start-page: 293
  year: 2013
  ident: 10.1016/j.ymssp.2017.01.015_b0030
  article-title: The use of updated robust reliability measures in stochastic dynamical systems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2013.08.015
– volume: 123
  start-page: 1219
  issue: 12
  year: 1997
  ident: 10.1016/j.ymssp.2017.01.015_b0160
  article-title: Asymptotic expansions for reliability and moments of uncertain systems
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1997)123:12(1219)
– volume: 124
  start-page: 455
  issue: 4
  year: 1998
  ident: 10.1016/j.ymssp.2017.01.015_b0085
  article-title: Updating models and their uncertainties. I: Bayesian statistical framework
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1998)124:4(455)
– volume: 80
  start-page: 33
  year: 2014
  ident: 10.1016/j.ymssp.2017.01.015_b0075
  article-title: Adaptive response surface based efficient finite element model updating
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2013.11.002
– volume: 130
  start-page: 3
  issue: 1
  year: 2004
  ident: 10.1016/j.ymssp.2017.01.015_b0185
  article-title: Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2004)130:1(3)
– volume: 279
  start-page: 301
  year: 2014
  ident: 10.1016/j.ymssp.2017.01.015_b0070
  article-title: Model-reduction techniques for Bayesian finite element model updating using dynamic response data
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.06.032
– volume: 30
  start-page: 602
  issue: 8
  year: 2015
  ident: 10.1016/j.ymssp.2017.01.015_b0105
  article-title: A hybrid optimization algorithm with bayesian inference for probabilistic model updating
  publication-title: Comp.-Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12142
– volume: 21
  start-page: 242
  issue: 4
  year: 2006
  ident: 10.1016/j.ymssp.2017.01.015_b0095
  article-title: Structural model updating and health monitoring with incomplete modal data using Gibbs sampler
  publication-title: Comp. Aided Civil Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2006.00432.x
– volume: 133
  start-page: 816
  issue: 7
  year: 2007
  ident: 10.1016/j.ymssp.2017.01.015_b0135
  article-title: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2007)133:7(816)
– volume: 52
  start-page: 115
  year: 2015
  ident: 10.1016/j.ymssp.2017.01.015_b0080
  article-title: Finite element model updating using the shadow hybrid Monte Carlo technique
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2014.06.005
– ident: 10.1016/j.ymssp.2017.01.015_b0150
– volume: 6
  start-page: 721
  issue: 6
  year: 1984
  ident: 10.1016/j.ymssp.2017.01.015_b0165
  article-title: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1984.4767596
– volume: 138
  start-page: 183
  year: 2014
  ident: 10.1016/j.ymssp.2017.01.015_b0050
  article-title: Neural network based modal identification of structural systems through output-only measurement
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2014.01.013
– volume: 70
  start-page: 209
  year: 2016
  ident: 10.1016/j.ymssp.2017.01.015_b0060
  article-title: Fast Bayesian approach for modal identification using free vibration data, Part I-Most probable value
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2015.05.031
– volume: 42
  start-page: 1221
  issue: 8
  year: 2013
  ident: 10.1016/j.ymssp.2017.01.015_b0045
  article-title: Response-only modal identification of structures using strong motion data
  publication-title: Earthquake Eng. Struct. Dynam.
  doi: 10.1002/eqe.2268
– volume: 32
  start-page: 1533
  issue: 10
  year: 2003
  ident: 10.1016/j.ymssp.2017.01.015_b0040
  article-title: System identification of linear structures based on Hilbert-Huang spectral analysis. Part 2: Complex modes
  publication-title: Earthquake Eng. Struct. Dynam.
  doi: 10.1002/eqe.288
– volume: 52
  start-page: 260
  year: 2015
  ident: 10.1016/j.ymssp.2017.01.015_b0110
  article-title: A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.06.004
– volume: 129
  start-page: 9
  issue: 1
  year: 2003
  ident: 10.1016/j.ymssp.2017.01.015_b0090
  article-title: Updating properties of nonlinear dynamical systems with uncertain input
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2003)129:1(9)
– volume: 142
  start-page: 04016016
  issue: 5
  year: 2016
  ident: 10.1016/j.ymssp.2017.01.015_b0140
  article-title: Transitional Markov Chain Monte Carlo: observations and improvements
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001066
– volume: 66–67
  start-page: 43
  year: 2016
  ident: 10.1016/j.ymssp.2017.01.015_b0115
  article-title: Fundamental two-stage formulation for Bayesian system identification, Part II: Application to ambient vibration data
  publication-title: Mech. Syst. Sig. Process.
– volume: 15
  start-page: 45
  issue: 1
  year: 2001
  ident: 10.1016/j.ymssp.2017.01.015_b0010
  article-title: Review and assessment of model updating for non-linear, transient dynamics
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1006/mssp.2000.1351
– volume: 8
  start-page: 999
  issue: 11
  year: 2012
  ident: 10.1016/j.ymssp.2017.01.015_b0015
  article-title: Integration of structural health monitoring in a system performance based life-cycle bridge management framework
  publication-title: Struct. Infrastruct. Eng.
– volume: 31
  start-page: 197
  issue: 2
  year: 2009
  ident: 10.1016/j.ymssp.2017.01.015_b0025
  article-title: Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2008.06.002
– volume: 48
  start-page: 15
  issue: 1–2
  year: 2014
  ident: 10.1016/j.ymssp.2017.01.015_b0055
  article-title: Uncertainty law in ambient modal identification—Part I: theory
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2013.07.016
– volume: 16
  start-page: 219
  issue: 3
  year: 2001
  ident: 10.1016/j.ymssp.2017.01.015_b0035
  article-title: Bayesian time-domain approach for modal updating using ambient data
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/S0266-8920(01)00004-2
SSID ssj0009406
Score 2.4522254
Snippet •Literature establishes motives behind interest in Bayesian model updating.•Model updating of a linear dynamic system with non-classical damping using modal...
Model updating using measured system dynamic response has a wide range of applications in system response evaluation and control, health monitoring, or...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 156
SubjectTerms Algorithms
Bayesian analysis
Bayesian model updating
Damping
Dynamic response
Gibbs sampling
Markov analysis
Mathematical models
Matrix methods
Modal data
Model updating
Monte Carlo simulation
Non-classical damping
Parameter uncertainty
Reliability analysis
Risk assessment
Sampling
Stiffness matrix
Stochastic models
Stochastic simulation
Substructures
Upgrading
Viscous damping
Title A new Gibbs sampling based algorithm for Bayesian model updating with incomplete complex modal data
URI https://dx.doi.org/10.1016/j.ymssp.2017.01.015
https://www.proquest.com/docview/1942186192
Volume 92
WOSCitedRecordID wos000395613100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuoftYexKu3ZDD3vzXCzLsqXHdHTrxlYGDSNvRrblNiV1Q-yU9N9XRxe7tKxsg0EwwVeh8_kcST7fdxD6kGZpakZuRZ2oMKlUHeqwUIWS6WCsOKuIEdP59T07Puazmfg5Gm08F-ZqkTUN32zE8r-aWu_Txgbq7F-Yu7-p3qH_a6PrrTa73v6R4SdQJTz4Mi-KNmglJIw3pwEEqyqQi9PL1bw7uzDJhQfyWhkKpamGE6yXwHTwS7Mg2gDCwZ2yWedqA6fBFx1LZutHtD8UcIctudKqn5vvEZAXAiQvy0Pw8dHkESjnX07kPDhaD0cOoHL5wh45c5kfbj1CxzifDecWyTxRZshKsr6MhzS2NUL2lfW1evYUkthSLb0ztoXxnDclLL0VmImt8XPP59vlh_P964u2BQVSkhkhVssSvSOmfQINgXYQ0OnX7uwR2oozJvgYbU2-Hs6-DYLNianL2jfcK1aZ3MB7j_rdqOZOfDeDlulz9MzNNvDEouQFGqnmJXp6S4PyFSonWOMFG7xgjxds8IJ7vGCNF-zxgg1esMcLBrzgAS_Y4QUbvGDAy2s0_Xw4_XQUusobYUkp6cIiFrziqhZUsLqoWBGTmkYqqSshZEqpUCmToqZEcf1mx4wqSbiMI0V4ATPSN2jcXDZqG-E6YVXClUyjokxKXhVRrWgcUVlWmRBJvYNi33F56VTpoTjKIvfph-e56e0cejuPiP6xHfSxv2hpRVkePj31FsnduNKOF3MNoYcv3PP2y90b3uZEJFDHTc-M3v7rfXfRk-HN2UPjbrVW79Dj8qqbt6v3Dok3E6yrIg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+Gibbs+sampling+based+algorithm+for+Bayesian+model+updating+with+incomplete+complex+modal+data&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Cheung%2C+Sai+Hung&rft.au=Bansal%2C+Sahil&rft.date=2017-08-01&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=92&rft.spage=156&rft.epage=172&rft_id=info:doi/10.1016%2Fj.ymssp.2017.01.015&rft.externalDocID=S0888327017300183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon