A new Gibbs sampling based algorithm for Bayesian model updating with incomplete complex modal data
•Literature establishes motives behind interest in Bayesian model updating.•Model updating of a linear dynamic system with non-classical damping using modal data.•Gibbs-sampling based algorithm proposed to update the PDF of the model parameters.•The approach also provides updated probability distrib...
Gespeichert in:
| Veröffentlicht in: | Mechanical systems and signal processing Jg. 92; S. 156 - 172 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin
Elsevier Ltd
01.08.2017
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0888-3270, 1096-1216 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Literature establishes motives behind interest in Bayesian model updating.•Model updating of a linear dynamic system with non-classical damping using modal data.•Gibbs-sampling based algorithm proposed to update the PDF of the model parameters.•The approach also provides updated probability distribution of complete mode shapes.•Convergence and numerical issues arising in case of high-dimensionality are addressed.
Model updating using measured system dynamic response has a wide range of applications in system response evaluation and control, health monitoring, or reliability and risk assessment. In this paper, we are interested in model updating of a linear dynamic system with non-classical damping based on incomplete modal data including modal frequencies, damping ratios and partial complex mode shapes of some of the dominant modes. In the proposed algorithm, the identification model is based on a linear structural model where the mass and stiffness matrix are represented as a linear sum of contribution of the corresponding mass and stiffness matrices from the individual prescribed substructures, and the damping matrix is represented as a sum of individual substructures in the case of viscous damping, in terms of mass and stiffness matrices in the case of Rayleigh damping or a combination of the former. To quantify the uncertainties and plausibility of the model parameters, a Bayesian approach is developed. A new Gibbs-sampling based algorithm is proposed that allows for an efficient update of the probability distribution of the model parameters. In addition to the model parameters, the probability distribution of complete mode shapes is also updated. Convergence issues and numerical issues arising in the case of high-dimensionality of the problem are addressed and solutions to tackle these problems are proposed. The effectiveness and efficiency of the proposed method are illustrated by numerical examples with complex modes. |
|---|---|
| AbstractList | •Literature establishes motives behind interest in Bayesian model updating.•Model updating of a linear dynamic system with non-classical damping using modal data.•Gibbs-sampling based algorithm proposed to update the PDF of the model parameters.•The approach also provides updated probability distribution of complete mode shapes.•Convergence and numerical issues arising in case of high-dimensionality are addressed.
Model updating using measured system dynamic response has a wide range of applications in system response evaluation and control, health monitoring, or reliability and risk assessment. In this paper, we are interested in model updating of a linear dynamic system with non-classical damping based on incomplete modal data including modal frequencies, damping ratios and partial complex mode shapes of some of the dominant modes. In the proposed algorithm, the identification model is based on a linear structural model where the mass and stiffness matrix are represented as a linear sum of contribution of the corresponding mass and stiffness matrices from the individual prescribed substructures, and the damping matrix is represented as a sum of individual substructures in the case of viscous damping, in terms of mass and stiffness matrices in the case of Rayleigh damping or a combination of the former. To quantify the uncertainties and plausibility of the model parameters, a Bayesian approach is developed. A new Gibbs-sampling based algorithm is proposed that allows for an efficient update of the probability distribution of the model parameters. In addition to the model parameters, the probability distribution of complete mode shapes is also updated. Convergence issues and numerical issues arising in the case of high-dimensionality of the problem are addressed and solutions to tackle these problems are proposed. The effectiveness and efficiency of the proposed method are illustrated by numerical examples with complex modes. Model updating using measured system dynamic response has a wide range of applications in system response evaluation and control, health monitoring, or reliability and risk assessment. In this paper, we are interested in model updating of a linear dynamic system with non-classical damping based on incomplete modal data including modal frequencies, damping ratios and partial complex mode shapes of some of the dominant modes. In the proposed algorithm, the identification model is based on a linear structural model where the mass and stiffness matrix are represented as a linear sum of contribution of the corresponding mass and stiffness matrices from the individual prescribed substructures, and the damping matrix is represented as a sum of individual substructures in the case of viscous damping, in terms of mass and stiffness matrices in the case of Rayleigh damping or a combination of the former. To quantify the uncertainties and plausibility of the model parameters, a Bayesian approach is developed. A new Gibbs-sampling based algorithm is proposed that allows for an efficient update of the probability distribution of the model parameters. In addition to the model parameters, the probability distribution of complete mode shapes is also updated. Convergence issues and numerical issues arising in the case of high-dimensionality of the problem are addressed and solutions to tackle these problems are proposed. The effectiveness and efficiency of the proposed method are illustrated by numerical examples with complex modes. |
| Author | Cheung, Sai Hung Bansal, Sahil |
| Author_xml | – sequence: 1 givenname: Sai Hung surname: Cheung fullname: Cheung, Sai Hung email: shcheung@ntu.edu.sg – sequence: 2 givenname: Sahil surname: Bansal fullname: Bansal, Sahil |
| BookMark | eNqFkD1PwzAQhi0EEuXjF7BYYk7x2U1qDwxQQUGqxMJuOckFXCV2sFOg_x6HMDGAdNLd8Dx3uveEHDrvkJALYHNgUFxt5_suxn7OGSznDFLlB2QGTBUZcCgOyYxJKTPBl-yYnMS4ZYypBStmpLqhDj_o2pZlpNF0fWvdCy1NxJqa9sUHO7x2tPGB3po9Rmsc7XyNLd31tRlG9iMR1LrKJxcHpNPwOWKmpQkyZ-SoMW3E859-Sp7v755XD9nmaf24utlklRAwZCVXspbYKKHypqzzkkMjGC6aWilTCKGwyI1qBKCUIHku0IA0nCHIMi9AnJLLaW0f_NsO46C3fhdcuqhBLTjIAhRPlJioKvgYAza6D7YzYa-B6TFMvdXfYeoxTM0gVZ4s9cuq7JD-924Ixrb_uNeTi-n3d4tBx8qiq7C2AatB197-6X8B6RSUVw |
| CitedBy_id | crossref_primary_10_1016_j_amc_2023_127891 crossref_primary_10_1016_j_apm_2018_05_004 crossref_primary_10_1002_stc_2936 crossref_primary_10_1016_j_strusafe_2023_102325 crossref_primary_10_3390_app112210615 crossref_primary_10_1016_j_ymssp_2021_108407 crossref_primary_10_1016_j_compgeo_2025_107087 crossref_primary_10_1002_stc_2770 crossref_primary_10_3390_app7060601 crossref_primary_10_1007_s13369_020_05056_7 crossref_primary_10_1016_j_ymssp_2021_107760 crossref_primary_10_1007_s00707_023_03819_5 crossref_primary_10_1016_j_ymssp_2023_110324 crossref_primary_10_1016_j_ymssp_2023_110401 crossref_primary_10_1016_j_engstruct_2023_116886 crossref_primary_10_1016_j_istruc_2022_01_082 crossref_primary_10_1016_j_cma_2021_113850 crossref_primary_10_1007_s41024_025_00587_8 crossref_primary_10_1016_j_jsv_2021_116726 crossref_primary_10_1016_j_probengmech_2022_103337 crossref_primary_10_1016_j_cma_2024_117418 crossref_primary_10_1016_j_jsv_2019_115139 crossref_primary_10_1016_j_istruc_2022_05_041 crossref_primary_10_1061__ASCE_EM_1943_7889_0001714 crossref_primary_10_1016_j_probengmech_2025_103761 crossref_primary_10_1016_j_istruc_2023_05_020 crossref_primary_10_3390_su14074231 crossref_primary_10_1016_j_ymssp_2021_108782 crossref_primary_10_1016_j_ymssp_2021_108583 crossref_primary_10_1016_j_cirpj_2022_06_006 crossref_primary_10_1016_j_ymssp_2025_112675 crossref_primary_10_1016_j_jsv_2024_118457 crossref_primary_10_1016_j_jsv_2024_118730 crossref_primary_10_1155_2020_5142925 crossref_primary_10_1002_stc_2556 crossref_primary_10_1088_1757_899X_936_1_012017 crossref_primary_10_1061_JENMDT_EMENG_8138 crossref_primary_10_1016_j_apm_2022_11_039 crossref_primary_10_1016_j_ymssp_2022_108985 crossref_primary_10_1061__ASCE_ST_1943_541X_0003354 crossref_primary_10_1016_j_engstruct_2023_115924 crossref_primary_10_1109_ACCESS_2018_2877630 crossref_primary_10_1016_j_jsv_2023_117712 crossref_primary_10_1016_j_engstruct_2018_06_040 crossref_primary_10_1088_3050_2454_adc580 crossref_primary_10_1007_s13349_024_00768_y crossref_primary_10_1016_j_ymssp_2019_106444 crossref_primary_10_1002_stc_2780 crossref_primary_10_1177_1475921720985143 crossref_primary_10_1016_j_ymssp_2019_106524 crossref_primary_10_1177_1687814019884165 crossref_primary_10_1007_s10518_023_01670_6 crossref_primary_10_1016_j_sigpro_2018_02_021 crossref_primary_10_1016_j_jobe_2022_105004 crossref_primary_10_1016_j_cma_2017_07_032 |
| Cites_doi | 10.1080/01621459.1990.10474968 10.1061/(ASCE)EM.1943-7889.0000839 10.1615/Int.J.UncertaintyQuantification.2015013581 10.1061/(ASCE)0733-9399(2009)135:4(243) 10.1016/j.compstruc.2012.10.018 10.1111/j.1467-8667.2012.00802.x 10.1002/stc.424 10.1016/j.ymssp.2014.11.001 10.1002/stc.453 10.1061/(ASCE)0733-9399(2002)128:4(380) 10.1016/j.cma.2013.08.015 10.1061/(ASCE)0733-9399(1997)123:12(1219) 10.1061/(ASCE)0733-9399(1998)124:4(455) 10.1016/j.finel.2013.11.002 10.1061/(ASCE)0733-9399(2004)130:1(3) 10.1016/j.cma.2014.06.032 10.1111/mice.12142 10.1111/j.1467-8667.2006.00432.x 10.1061/(ASCE)0733-9399(2007)133:7(816) 10.1016/j.ymssp.2014.06.005 10.1109/TPAMI.1984.4767596 10.1016/j.compstruc.2014.01.013 10.1016/j.ymssp.2015.05.031 10.1002/eqe.2268 10.1002/eqe.288 10.1016/j.strusafe.2014.06.004 10.1061/(ASCE)0733-9399(2003)129:1(9) 10.1061/(ASCE)EM.1943-7889.0001066 10.1006/mssp.2000.1351 10.1016/j.strusafe.2008.06.002 10.1016/j.ymssp.2013.07.016 10.1016/S0266-8920(01)00004-2 |
| ContentType | Journal Article |
| Copyright | 2017 Copyright Elsevier BV Aug 2017 |
| Copyright_xml | – notice: 2017 – notice: Copyright Elsevier BV Aug 2017 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ymssp.2017.01.015 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-1216 |
| EndPage | 172 |
| ExternalDocumentID | 10_1016_j_ymssp_2017_01_015 S0888327017300183 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c331t-b298d8ef9395fbd5b21f30e4fd99a6339e65a9f31e8818253ea18a20e18b5613 |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395613100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-3270 |
| IngestDate | Mon Jul 14 07:44:20 EDT 2025 Sat Nov 29 02:08:12 EST 2025 Tue Nov 18 21:57:23 EST 2025 Fri Feb 23 02:29:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bayesian model updating Stochastic simulation Non-classical damping Gibbs sampling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-b298d8ef9395fbd5b21f30e4fd99a6339e65a9f31e8818253ea18a20e18b5613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1942186192 |
| PQPubID | 2045429 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_1942186192 crossref_primary_10_1016_j_ymssp_2017_01_015 crossref_citationtrail_10_1016_j_ymssp_2017_01_015 elsevier_sciencedirect_doi_10_1016_j_ymssp_2017_01_015 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin |
| PublicationPlace_xml | – name: Berlin |
| PublicationTitle | Mechanical systems and signal processing |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Boulkaibet (b0080) 2015; 52 Yan, Katafygiotis (b0110) 2015; 52 Beck (b0175) 2010; 17 Papadimitriou (b0065) 2012; 19 Yang (b0040) 2003; 32 Zhang, Au (b0115) 2016; 66–67 Johnson (b0185) 2004; 130 Yuen, Beck (b0090) 2003; 129 Chakraborty, Sen (b0075) 2014; 80 Ching, Muto, Beck (b0095) 2006; 21 Yuen, Katafygiotis (b0035) 2001; 16 Sun, Betti (b0105) 2015; 30 Ching, Chen (b0135) 2007; 133 Facchini, Betti, Biagini (b0050) 2014; 138 Papadimitriou, Papadioti (b0100) 2013; 126 Beck, Au (b0125) 2002; 128 Cheung, Beck (b0130) 2009; 135 E.T. Jaynes, in: R.D. Levine, M. Tribus (Eds.), Where Do We Stand on Maximum Entropy?, 1978, The MIT Press. Gelfand (b0180) 1990; 85 Papadimitriou, Beck, Katafygiotis (b0160) 1997; 123 Straub, Papaioannou (b0145) 2014; 141 Beck, Katafygiotis (b0085) 1998; 124 S.-K. Au, F.A. DiazDelaO, I. Yoshida, Bayesian Updating and Model Class Selection with Subset Simulation, 2015. arXiv preprint Au (b0055) 2014; 48 Ghahari (b0045) 2013; 42 Jensen (b0070) 2014; 279 Jensen (b0030) 2013; 267 Zhang, Wan, Sato (b0120) 2013; 28 Friswell, Mottershead (b0005) 1995 . Bansal (b0155) 2015; 5 Simoen, De Roeck, Lombaert (b0020) 2015; 56 Zhang (b0060) 2016; 70 Okasha, Frangopol (b0015) 2012; 8 Betz, Papaioannou, Straub (b0140) 2016; 142 Liel (b0025) 2009; 31 Hemez, Doebling (b0010) 2001; 15 Geman, Geman (b0165) 1984; 6 Yang (10.1016/j.ymssp.2017.01.015_b0040) 2003; 32 Bansal (10.1016/j.ymssp.2017.01.015_b0155) 2015; 5 Liel (10.1016/j.ymssp.2017.01.015_b0025) 2009; 31 Papadimitriou (10.1016/j.ymssp.2017.01.015_b0160) 1997; 123 Straub (10.1016/j.ymssp.2017.01.015_b0145) 2014; 141 Sun (10.1016/j.ymssp.2017.01.015_b0105) 2015; 30 Cheung (10.1016/j.ymssp.2017.01.015_b0130) 2009; 135 Geman (10.1016/j.ymssp.2017.01.015_b0165) 1984; 6 Beck (10.1016/j.ymssp.2017.01.015_b0125) 2002; 128 Gelfand (10.1016/j.ymssp.2017.01.015_b0180) 1990; 85 Ching (10.1016/j.ymssp.2017.01.015_b0095) 2006; 21 Jensen (10.1016/j.ymssp.2017.01.015_b0070) 2014; 279 Zhang (10.1016/j.ymssp.2017.01.015_b0115) 2016; 66–67 Boulkaibet (10.1016/j.ymssp.2017.01.015_b0080) 2015; 52 Papadimitriou (10.1016/j.ymssp.2017.01.015_b0065) 2012; 19 Zhang (10.1016/j.ymssp.2017.01.015_b0120) 2013; 28 Jensen (10.1016/j.ymssp.2017.01.015_b0030) 2013; 267 Au (10.1016/j.ymssp.2017.01.015_b0055) 2014; 48 Yuen (10.1016/j.ymssp.2017.01.015_b0090) 2003; 129 Johnson (10.1016/j.ymssp.2017.01.015_b0185) 2004; 130 10.1016/j.ymssp.2017.01.015_b0170 Ghahari (10.1016/j.ymssp.2017.01.015_b0045) 2013; 42 Zhang (10.1016/j.ymssp.2017.01.015_b0060) 2016; 70 10.1016/j.ymssp.2017.01.015_b0150 Ching (10.1016/j.ymssp.2017.01.015_b0135) 2007; 133 Simoen (10.1016/j.ymssp.2017.01.015_b0020) 2015; 56 Betz (10.1016/j.ymssp.2017.01.015_b0140) 2016; 142 Hemez (10.1016/j.ymssp.2017.01.015_b0010) 2001; 15 Okasha (10.1016/j.ymssp.2017.01.015_b0015) 2012; 8 Facchini (10.1016/j.ymssp.2017.01.015_b0050) 2014; 138 Chakraborty (10.1016/j.ymssp.2017.01.015_b0075) 2014; 80 Beck (10.1016/j.ymssp.2017.01.015_b0085) 1998; 124 Friswell (10.1016/j.ymssp.2017.01.015_b0005) 1995 Yan (10.1016/j.ymssp.2017.01.015_b0110) 2015; 52 Beck (10.1016/j.ymssp.2017.01.015_b0175) 2010; 17 Papadimitriou (10.1016/j.ymssp.2017.01.015_b0100) 2013; 126 Yuen (10.1016/j.ymssp.2017.01.015_b0035) 2001; 16 |
| References_xml | – volume: 138 start-page: 183 year: 2014 end-page: 194 ident: b0050 article-title: Neural network based modal identification of structural systems through output-only measurement publication-title: Comput. Struct. – volume: 6 start-page: 721 year: 1984 end-page: 741 ident: b0165 article-title: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 267 start-page: 293 year: 2013 end-page: 317 ident: b0030 article-title: The use of updated robust reliability measures in stochastic dynamical systems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 8 start-page: 999 year: 2012 end-page: 1016 ident: b0015 article-title: Integration of structural health monitoring in a system performance based life-cycle bridge management framework publication-title: Struct. Infrastruct. Eng. – volume: 32 start-page: 1533 year: 2003 end-page: 1554 ident: b0040 article-title: System identification of linear structures based on Hilbert-Huang spectral analysis. Part 2: Complex modes publication-title: Earthquake Eng. Struct. Dynam. – volume: 129 start-page: 9 year: 2003 end-page: 20 ident: b0090 article-title: Updating properties of nonlinear dynamical systems with uncertain input publication-title: J. Eng. Mech. – volume: 52 start-page: 115 year: 2015 end-page: 132 ident: b0080 article-title: Finite element model updating using the shadow hybrid Monte Carlo technique publication-title: Mech. Syst. Sig. Process. – volume: 66–67 start-page: 43 year: 2016 end-page: 61 ident: b0115 article-title: Fundamental two-stage formulation for Bayesian system identification, Part II: Application to ambient vibration data publication-title: Mech. Syst. Sig. Process. – volume: 70 start-page: 209 year: 2016 end-page: 220 ident: b0060 article-title: Fast Bayesian approach for modal identification using free vibration data, Part I-Most probable value publication-title: Mech. Syst. Sig. Process. – volume: 80 start-page: 33 year: 2014 end-page: 40 ident: b0075 article-title: Adaptive response surface based efficient finite element model updating publication-title: Finite Elem. Anal. Des. – volume: 126 start-page: 15 year: 2013 end-page: 28 ident: b0100 article-title: Component mode synthesis techniques for finite element model updating publication-title: Comput. Struct. – volume: 130 start-page: 3 year: 2004 end-page: 15 ident: b0185 article-title: Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data publication-title: J. Eng. Mech. – volume: 15 start-page: 45 year: 2001 end-page: 74 ident: b0010 article-title: Review and assessment of model updating for non-linear, transient dynamics publication-title: Mech. Syst. Sig. Process. – volume: 30 start-page: 602 year: 2015 end-page: 619 ident: b0105 article-title: A hybrid optimization algorithm with bayesian inference for probabilistic model updating publication-title: Comp.-Aided Civil Infrastruct. Eng. – volume: 48 start-page: 15 year: 2014 end-page: 33 ident: b0055 article-title: Uncertainty law in ambient modal identification—Part I: theory publication-title: Mech. Syst. Sig. Process. – volume: 5 start-page: 361 year: 2015 end-page: 374 ident: b0155 article-title: A new Gibbs sampling based bayesian model updating approach using modal data from multiple setups publication-title: Int. J. Uncert. Quant. – volume: 16 start-page: 219 year: 2001 end-page: 231 ident: b0035 article-title: Bayesian time-domain approach for modal updating using ambient data publication-title: Probab. Eng. Mech. – volume: 31 start-page: 197 year: 2009 end-page: 211 ident: b0025 article-title: Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings publication-title: Struct. Saf. – volume: 128 start-page: 380 year: 2002 end-page: 391 ident: b0125 article-title: Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation publication-title: J. Eng. Mech. – volume: 135 start-page: 243 year: 2009 end-page: 255 ident: b0130 article-title: Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters publication-title: J. Eng. Mech. – volume: 56 start-page: 123 year: 2015 end-page: 149 ident: b0020 article-title: Dealing with uncertainty in model updating for damage assessment: a review publication-title: Mech. Syst. Sig. Process. – volume: 52 start-page: 260 year: 2015 end-page: 271 ident: b0110 article-title: A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups publication-title: Struct. Saf. – volume: 142 start-page: 04016016 year: 2016 ident: b0140 article-title: Transitional Markov Chain Monte Carlo: observations and improvements publication-title: J. Eng. Mech. – volume: 123 start-page: 1219 year: 1997 end-page: 1229 ident: b0160 article-title: Asymptotic expansions for reliability and moments of uncertain systems publication-title: J. Eng. Mech. – volume: 28 start-page: 522 year: 2013 end-page: 530 ident: b0120 article-title: Advanced Markov chain monte carlo approach for finite element calibration under uncertainty publication-title: Comp.-Aided Civil Infrastruct. Eng. – volume: 124 start-page: 455 year: 1998 end-page: 461 ident: b0085 article-title: Updating models and their uncertainties. I: Bayesian statistical framework publication-title: J. Eng. Mech. – reference: . – year: 1995 ident: b0005 article-title: Finite Element Model Updating in Structural Dynamics – volume: 279 start-page: 301 year: 2014 end-page: 324 ident: b0070 article-title: Model-reduction techniques for Bayesian finite element model updating using dynamic response data publication-title: Comput. Methods Appl. Mech. Eng. – volume: 19 start-page: 630 year: 2012 end-page: 654 ident: b0065 article-title: Variability of updated finite element models and their predictions consistent with vibration measurements publication-title: Struct. Control Health Monitor. – reference: S.-K. Au, F.A. DiazDelaO, I. Yoshida, Bayesian Updating and Model Class Selection with Subset Simulation, 2015. arXiv preprint – volume: 42 start-page: 1221 year: 2013 end-page: 1242 ident: b0045 article-title: Response-only modal identification of structures using strong motion data publication-title: Earthquake Eng. Struct. Dynam. – volume: 17 start-page: 825 year: 2010 end-page: 847 ident: b0175 article-title: Bayesian system identification based on probability logic publication-title: Struct. Control Health Monitor. – volume: 141 start-page: 04014134 year: 2014 ident: b0145 article-title: Bayesian updating with structural reliability methods publication-title: J. Eng. Mech. – volume: 21 start-page: 242 year: 2006 end-page: 257 ident: b0095 article-title: Structural model updating and health monitoring with incomplete modal data using Gibbs sampler publication-title: Comp. Aided Civil Infrastruct. Eng. – volume: 133 start-page: 816 year: 2007 end-page: 832 ident: b0135 article-title: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging publication-title: J. Eng. Mech. – volume: 85 start-page: 972 year: 1990 end-page: 985 ident: b0180 article-title: Illustration of Bayesian inference in normal data models using Gibbs sampling publication-title: J. Am. Statist. Assoc. – reference: E.T. Jaynes, in: R.D. Levine, M. Tribus (Eds.), Where Do We Stand on Maximum Entropy?, 1978, The MIT Press. – volume: 85 start-page: 972 issue: 412 year: 1990 ident: 10.1016/j.ymssp.2017.01.015_b0180 article-title: Illustration of Bayesian inference in normal data models using Gibbs sampling publication-title: J. Am. Statist. Assoc. doi: 10.1080/01621459.1990.10474968 – volume: 141 start-page: 04014134 issue: 3 year: 2014 ident: 10.1016/j.ymssp.2017.01.015_b0145 article-title: Bayesian updating with structural reliability methods publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0000839 – volume: 5 start-page: 361 issue: 4 year: 2015 ident: 10.1016/j.ymssp.2017.01.015_b0155 article-title: A new Gibbs sampling based bayesian model updating approach using modal data from multiple setups publication-title: Int. J. Uncert. Quant. doi: 10.1615/Int.J.UncertaintyQuantification.2015013581 – volume: 135 start-page: 243 issue: 4 year: 2009 ident: 10.1016/j.ymssp.2017.01.015_b0130 article-title: Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2009)135:4(243) – volume: 126 start-page: 15 year: 2013 ident: 10.1016/j.ymssp.2017.01.015_b0100 article-title: Component mode synthesis techniques for finite element model updating publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.10.018 – volume: 28 start-page: 522 issue: 7 year: 2013 ident: 10.1016/j.ymssp.2017.01.015_b0120 article-title: Advanced Markov chain monte carlo approach for finite element calibration under uncertainty publication-title: Comp.-Aided Civil Infrastruct. Eng. doi: 10.1111/j.1467-8667.2012.00802.x – ident: 10.1016/j.ymssp.2017.01.015_b0170 – volume: 17 start-page: 825 issue: 7 year: 2010 ident: 10.1016/j.ymssp.2017.01.015_b0175 article-title: Bayesian system identification based on probability logic publication-title: Struct. Control Health Monitor. doi: 10.1002/stc.424 – year: 1995 ident: 10.1016/j.ymssp.2017.01.015_b0005 – volume: 56 start-page: 123 year: 2015 ident: 10.1016/j.ymssp.2017.01.015_b0020 article-title: Dealing with uncertainty in model updating for damage assessment: a review publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2014.11.001 – volume: 19 start-page: 630 issue: 5 year: 2012 ident: 10.1016/j.ymssp.2017.01.015_b0065 article-title: Variability of updated finite element models and their predictions consistent with vibration measurements publication-title: Struct. Control Health Monitor. doi: 10.1002/stc.453 – volume: 128 start-page: 380 issue: 4 year: 2002 ident: 10.1016/j.ymssp.2017.01.015_b0125 article-title: Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2002)128:4(380) – volume: 267 start-page: 293 year: 2013 ident: 10.1016/j.ymssp.2017.01.015_b0030 article-title: The use of updated robust reliability measures in stochastic dynamical systems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2013.08.015 – volume: 123 start-page: 1219 issue: 12 year: 1997 ident: 10.1016/j.ymssp.2017.01.015_b0160 article-title: Asymptotic expansions for reliability and moments of uncertain systems publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1997)123:12(1219) – volume: 124 start-page: 455 issue: 4 year: 1998 ident: 10.1016/j.ymssp.2017.01.015_b0085 article-title: Updating models and their uncertainties. I: Bayesian statistical framework publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1998)124:4(455) – volume: 80 start-page: 33 year: 2014 ident: 10.1016/j.ymssp.2017.01.015_b0075 article-title: Adaptive response surface based efficient finite element model updating publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2013.11.002 – volume: 130 start-page: 3 issue: 1 year: 2004 ident: 10.1016/j.ymssp.2017.01.015_b0185 article-title: Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2004)130:1(3) – volume: 279 start-page: 301 year: 2014 ident: 10.1016/j.ymssp.2017.01.015_b0070 article-title: Model-reduction techniques for Bayesian finite element model updating using dynamic response data publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.06.032 – volume: 30 start-page: 602 issue: 8 year: 2015 ident: 10.1016/j.ymssp.2017.01.015_b0105 article-title: A hybrid optimization algorithm with bayesian inference for probabilistic model updating publication-title: Comp.-Aided Civil Infrastruct. Eng. doi: 10.1111/mice.12142 – volume: 21 start-page: 242 issue: 4 year: 2006 ident: 10.1016/j.ymssp.2017.01.015_b0095 article-title: Structural model updating and health monitoring with incomplete modal data using Gibbs sampler publication-title: Comp. Aided Civil Infrastruct. Eng. doi: 10.1111/j.1467-8667.2006.00432.x – volume: 133 start-page: 816 issue: 7 year: 2007 ident: 10.1016/j.ymssp.2017.01.015_b0135 article-title: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2007)133:7(816) – volume: 52 start-page: 115 year: 2015 ident: 10.1016/j.ymssp.2017.01.015_b0080 article-title: Finite element model updating using the shadow hybrid Monte Carlo technique publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2014.06.005 – ident: 10.1016/j.ymssp.2017.01.015_b0150 – volume: 6 start-page: 721 issue: 6 year: 1984 ident: 10.1016/j.ymssp.2017.01.015_b0165 article-title: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1984.4767596 – volume: 138 start-page: 183 year: 2014 ident: 10.1016/j.ymssp.2017.01.015_b0050 article-title: Neural network based modal identification of structural systems through output-only measurement publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2014.01.013 – volume: 70 start-page: 209 year: 2016 ident: 10.1016/j.ymssp.2017.01.015_b0060 article-title: Fast Bayesian approach for modal identification using free vibration data, Part I-Most probable value publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2015.05.031 – volume: 42 start-page: 1221 issue: 8 year: 2013 ident: 10.1016/j.ymssp.2017.01.015_b0045 article-title: Response-only modal identification of structures using strong motion data publication-title: Earthquake Eng. Struct. Dynam. doi: 10.1002/eqe.2268 – volume: 32 start-page: 1533 issue: 10 year: 2003 ident: 10.1016/j.ymssp.2017.01.015_b0040 article-title: System identification of linear structures based on Hilbert-Huang spectral analysis. Part 2: Complex modes publication-title: Earthquake Eng. Struct. Dynam. doi: 10.1002/eqe.288 – volume: 52 start-page: 260 year: 2015 ident: 10.1016/j.ymssp.2017.01.015_b0110 article-title: A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2014.06.004 – volume: 129 start-page: 9 issue: 1 year: 2003 ident: 10.1016/j.ymssp.2017.01.015_b0090 article-title: Updating properties of nonlinear dynamical systems with uncertain input publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2003)129:1(9) – volume: 142 start-page: 04016016 issue: 5 year: 2016 ident: 10.1016/j.ymssp.2017.01.015_b0140 article-title: Transitional Markov Chain Monte Carlo: observations and improvements publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001066 – volume: 66–67 start-page: 43 year: 2016 ident: 10.1016/j.ymssp.2017.01.015_b0115 article-title: Fundamental two-stage formulation for Bayesian system identification, Part II: Application to ambient vibration data publication-title: Mech. Syst. Sig. Process. – volume: 15 start-page: 45 issue: 1 year: 2001 ident: 10.1016/j.ymssp.2017.01.015_b0010 article-title: Review and assessment of model updating for non-linear, transient dynamics publication-title: Mech. Syst. Sig. Process. doi: 10.1006/mssp.2000.1351 – volume: 8 start-page: 999 issue: 11 year: 2012 ident: 10.1016/j.ymssp.2017.01.015_b0015 article-title: Integration of structural health monitoring in a system performance based life-cycle bridge management framework publication-title: Struct. Infrastruct. Eng. – volume: 31 start-page: 197 issue: 2 year: 2009 ident: 10.1016/j.ymssp.2017.01.015_b0025 article-title: Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2008.06.002 – volume: 48 start-page: 15 issue: 1–2 year: 2014 ident: 10.1016/j.ymssp.2017.01.015_b0055 article-title: Uncertainty law in ambient modal identification—Part I: theory publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2013.07.016 – volume: 16 start-page: 219 issue: 3 year: 2001 ident: 10.1016/j.ymssp.2017.01.015_b0035 article-title: Bayesian time-domain approach for modal updating using ambient data publication-title: Probab. Eng. Mech. doi: 10.1016/S0266-8920(01)00004-2 |
| SSID | ssj0009406 |
| Score | 2.4522254 |
| Snippet | •Literature establishes motives behind interest in Bayesian model updating.•Model updating of a linear dynamic system with non-classical damping using modal... Model updating using measured system dynamic response has a wide range of applications in system response evaluation and control, health monitoring, or... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 156 |
| SubjectTerms | Algorithms Bayesian analysis Bayesian model updating Damping Dynamic response Gibbs sampling Markov analysis Mathematical models Matrix methods Modal data Model updating Monte Carlo simulation Non-classical damping Parameter uncertainty Reliability analysis Risk assessment Sampling Stiffness matrix Stochastic models Stochastic simulation Substructures Upgrading Viscous damping |
| Title | A new Gibbs sampling based algorithm for Bayesian model updating with incomplete complex modal data |
| URI | https://dx.doi.org/10.1016/j.ymssp.2017.01.015 https://www.proquest.com/docview/1942186192 |
| Volume | 92 |
| WOSCitedRecordID | wos000395613100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcKp6itKA9cDNGXj93jykqFAQVEhHKzVrb6zZV6kaxU6X_npl92KUVET0gWbblx8rJfN6ZXc_3DSHvWFGzQEHkBt4FKTmq9rkqJexVsIlLnur6Kb--ZScnfDYTP0ajpePCXC2ypuGbjVj-V1PDMTA2UmfvYe6-UTgA-2B0WIPZYf1Php9glXDv87woWq-VmDDenHrorCpPLk4vV_Pu7EInFx7Ka6UplLoajrdeItPBTc2iaAMKB3fKZJ2rDV6GX3QMma2PaL8r5A4bcqVRP9ffIzAvBElehofg_KPOI1C2f_kp597xejhziJXLF-bMmc38sPMR4ONcNtzQbXE_Ck05ENfHmnp3tpNkSXrD3zJTuudOV25mFc4_XF-0LQqLskzrqxry55_C2bccWp9m6DLYznPdSI6N5AGDJXlAdsIsEXxMdiZfjmZfB6HmWNdj7X-FU6rSOYF3nuVv0cwtv66DlekTsmtHGXRi0PGUjFTzjDy-oT35nJQTCjihGifU4YRqnNAeJxRwQh1OqMYJdTihiBM64IRanFCNE4o4eUGmn46mH499W3HDL6OIdX4RCl5xVYtIJHVRJUXI6ihQcV0JIdMoEipNpKgjpjgEemESKcm4DAPFeIEj0Zdk3Fw26hWhUgQSB-tJVoUxr0qRQLNVVZWpEoWSco-E7o_LS6tGj0VRFvkWo-2R9_1NSyPGsv3y1Fkkt_GkiRNzwNj2Gw-c_XL7Zrc5EzHWb4MR0ev7PcY-eTS8Jwdk3K3W6g15WF5183b11uLvNwLmplQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+Gibbs+sampling+based+algorithm+for+Bayesian+model+updating+with+incomplete+complex+modal+data&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Cheung%2C+Sai+Hung&rft.au=Bansal%2C+Sahil&rft.date=2017-08-01&rft.issn=0888-3270&rft.volume=92&rft.spage=156&rft.epage=172&rft_id=info:doi/10.1016%2Fj.ymssp.2017.01.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2017_01_015 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |