A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations
•Two-dimensional distributed-order fractional differential equations (DOFDE) are used in different applications.•Recently, the Riemann-Liouville fractional integral operator (RLFIO) of wavelets was not calculated exactly.•We introduce fractional-order Chebyshev wavelets (FOCW) and use them to solve...
Uložené v:
| Vydané v: | Communications in nonlinear science & numerical simulation Ročník 95; s. 105597 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.04.2021
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 1007-5704, 1878-7274 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | •Two-dimensional distributed-order fractional differential equations (DOFDE) are used in different applications.•Recently, the Riemann-Liouville fractional integral operator (RLFIO) of wavelets was not calculated exactly.•We introduce fractional-order Chebyshev wavelets (FOCW) and use them to solve two-dimensional DOFDE.•By applying regularized beta functions we obtain an exact formula for the RLFIO for FOCW.•By using FOCW and the exact formula, we obtain a very effcient and accurate numerical solutions for two-dimensional DOFDE.
We provide a new effective method for the two-dimensional distributed-order fractional differential equations (DOFDEs). The technique is based on fractional-order Chebyshev wavelets. An exact formula involving regularized beta functions for determining the Riemann-Liouville fractional integral operator of these wavelets is given. The given wavelets and this formula are utilized to find the solutions of the given two-dimensional DOFDEs. The method gives very accurate results. The given numerical examples support this claim. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1007-5704 1878-7274 |
| DOI: | 10.1016/j.cnsns.2020.105597 |