A new hybrid iterative method for mixed equilibrium problems and variational inequality problem for relaxed cocoercive mappings with application to optimization problems
In this paper, we introduce and study a new hybrid iterative method for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of an infinite family of nonexpansive mappings and the set of solutions of variational inequalities for a ξ -Lipschitz cont...
Uloženo v:
| Vydáno v: | Nonlinear analysis. Hybrid systems Ročník 3; číslo 4; s. 510 - 530 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.2009
|
| Témata: | |
| ISSN: | 1751-570X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we introduce and study a new hybrid iterative method for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of an infinite family of nonexpansive mappings and the set of solutions of variational inequalities for a
ξ
-Lipschitz continuous and relaxed
(
m
,
v
)
-cocoercive mappings in Hilbert spaces. Then, we prove a strong convergence theorem of the iterative sequence generated by the proposed iterative algorithm which solves some optimization problems under some suitable conditions. Our results extend and improve the recent results of Yao et al. [Y. Yao, M.A. Noor, S. Zainab and Y.C. Liou, Mixed equilibrium problems and optimization problems, J. Math. Anal. Appl (2009).
doi:10.1016/j.jmaa.2008.12.005] and Gao and Guo [X. Gao and Y. Guo, Strong convergence theorem of a modified iterative algorithm for Mixed equilibrium problems in Hilbert spaces, J. Inequal. Appl. (2008).
doi:10.1155/2008/454181] and many others. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1751-570X |
| DOI: | 10.1016/j.nahs.2009.04.001 |