Perturbed soliton solutions for an integral modified KdV equation
•An integral modified KdV equation is considered.•The KdV equation is solved for the solitons solutions using perturbation technique.•The effect of inhomogeneity is studied and show deformed soliton excitation. We investigate throughout this paper the effect of inhomogeneity on the propagation of so...
Uložené v:
| Vydané v: | Communications in nonlinear science & numerical simulation Ročník 91; s. 105437 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.12.2020
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 1007-5704, 1878-7274 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | •An integral modified KdV equation is considered.•The KdV equation is solved for the solitons solutions using perturbation technique.•The effect of inhomogeneity is studied and show deformed soliton excitation.
We investigate throughout this paper the effect of inhomogeneity on the propagation of solitons in ferromagnetic systems governing the magnetization evolution in a magnetic medium. Indeed we focus our attention on a nonlinear evolution equation derived by M. Saravanan and A. Arnaudon (2018 Phys. Lett. A 382 2638) that takes into account the inhomogeneity we are interested in. The perturbed soliton solutions are constructed using a multiple scale soliton perturbation theory by solving the associated linear eigenvalue problem with proper derivation of complete set of eigenfunctions. We present two types of inhomogeneities, such as localized and linear, and their effects on soliton propagation. It is found that the localized inhomogeneity supports stable soliton excitations with constant amplitude. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1007-5704 1878-7274 |
| DOI: | 10.1016/j.cnsns.2020.105437 |