A formal framework for specifying sequent calculus proof systems

Intuitionistic logic and intuitionistic type systems are commonly used as frameworks for the specification of natural deduction proof systems. In this paper we show how to use classical linear logic as a logical framework to specify sequent calculus proof systems and to establish some simple consequ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical computer science Ročník 474; s. 98 - 116
Hlavní autori: Miller, Dale, Pimentel, Elaine
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 25.02.2013
Elsevier
Predmet:
ISSN:0304-3975, 1879-2294
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Intuitionistic logic and intuitionistic type systems are commonly used as frameworks for the specification of natural deduction proof systems. In this paper we show how to use classical linear logic as a logical framework to specify sequent calculus proof systems and to establish some simple consequences of the specified sequent calculus proof systems. In particular, derivability of an inference rule from a set of inference rules can be decided by bounded (linear) logic programming search on the specified rules. We also present two simple and decidable conditions that guarantee that the cut rule and non-atomic initial rules can be eliminated.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2012.12.008