A formal framework for specifying sequent calculus proof systems

Intuitionistic logic and intuitionistic type systems are commonly used as frameworks for the specification of natural deduction proof systems. In this paper we show how to use classical linear logic as a logical framework to specify sequent calculus proof systems and to establish some simple consequ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 474; s. 98 - 116
Hlavní autoři: Miller, Dale, Pimentel, Elaine
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 25.02.2013
Elsevier
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Intuitionistic logic and intuitionistic type systems are commonly used as frameworks for the specification of natural deduction proof systems. In this paper we show how to use classical linear logic as a logical framework to specify sequent calculus proof systems and to establish some simple consequences of the specified sequent calculus proof systems. In particular, derivability of an inference rule from a set of inference rules can be decided by bounded (linear) logic programming search on the specified rules. We also present two simple and decidable conditions that guarantee that the cut rule and non-atomic initial rules can be eliminated.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2012.12.008