Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets

Moment-sum-of-squares hierarchies of semidefinite programs can be used to approximate the volume of a given compact basic semialgebraic set K . The idea consists of approximating from above the indicator function of K with a sequence of polynomials of increasing degree d , so that the integrals of t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization letters Ročník 12; číslo 3; s. 435 - 442
Hlavní autoři: Korda, Milan, Henrion, Didier
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2018
Témata:
ISSN:1862-4472, 1862-4480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Moment-sum-of-squares hierarchies of semidefinite programs can be used to approximate the volume of a given compact basic semialgebraic set K . The idea consists of approximating from above the indicator function of K with a sequence of polynomials of increasing degree d , so that the integrals of these polynomials generate a convergence sequence of upper bounds on the volume of K . Under certain assumptions, we show that the asymptotic rate of this convergence is at least O ( 1 / log log d ) in general and O ( 1 / log d ) provided that the semialgebraic set is defined by a single inequality.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-017-1186-x