Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets
Moment-sum-of-squares hierarchies of semidefinite programs can be used to approximate the volume of a given compact basic semialgebraic set K . The idea consists of approximating from above the indicator function of K with a sequence of polynomials of increasing degree d , so that the integrals of t...
Uloženo v:
| Vydáno v: | Optimization letters Ročník 12; číslo 3; s. 435 - 442 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2018
|
| Témata: | |
| ISSN: | 1862-4472, 1862-4480 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Moment-sum-of-squares hierarchies of semidefinite programs can be used to approximate the volume of a given compact basic semialgebraic set
K
. The idea consists of approximating from above the indicator function of
K
with a sequence of polynomials of increasing degree
d
, so that the integrals of these polynomials generate a convergence sequence of upper bounds on the volume of
K
. Under certain assumptions, we show that the asymptotic rate of this convergence is at least
O
(
1
/
log
log
d
)
in general and
O
(
1
/
log
d
)
provided that the semialgebraic set is defined by a single inequality. |
|---|---|
| ISSN: | 1862-4472 1862-4480 |
| DOI: | 10.1007/s11590-017-1186-x |